Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 72997 by yannickmendes_33 last updated on 05/Nov/19

The area of the equilateral triangle is equal to (((√(16))(√8))/(3(√π)))  Calculate the area of the circle inscribed in the triangle.

Theareaoftheequilateraltriangleisequalto1683πCalculatetheareaofthecircleinscribedinthetriangle.

Answered by Kunal12588 last updated on 05/Nov/19

area of equilateral △ = (((√3) a^2 )/4)=(((√(16))(√8))/(3(√π)))=((8(√2))/(3(√π)))  ⇒(a^2 /4)=((8(√2))/(3(√(3π))))  area of circle = π r^2   (h_1 /h_2 )=(2/1)  ⇒h_1 =2h_2   h_1 +h_2 =h  ⇒3h_2 =h  ⇒h_2 =(h/3)  h_2 =r=(h/3)  ar circle=πr^2   =π((h/3))^2   =π((1/3)×((a(√3))/2))^2   =π×(1/3)×(a^2 /4)  =π×(1/3)×((8(√2))/(3(√(3π))))  =((8(√(6π)))/(27))

areaofequilateral=3a24=1683π=823πa24=8233πareaofcircle=πr2h1h2=21h1=2h2h1+h2=h3h2=hh2=h3h2=r=h3arcircle=πr2=π(h3)2=π(13×a32)2=π×13×a24=π×13×8233π=86π27

Terms of Service

Privacy Policy

Contact: info@tinkutara.com