Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 73027 by mathmax by abdo last updated on 05/Nov/19

x and y are reals(or complex) let put x^((0)) =1 ,x^((1)) =x  x^((2)) =x(x−1).....x^((n)) =x(x−1)(x−2)...(x−n+1)prove that  (x+y)^((n)) =Σ_(k=0) ^n  C_n ^k   x^((n−k)) y^((k))

xandyarereals(orcomplex)letputx(0)=1,x(1)=xx(2)=x(x1).....x(n)=x(x1)(x2)...(xn+1)provethat(x+y)(n)=k=0nCnkx(nk)y(k)

Answered by mind is power last updated on 05/Nov/19

for n=0  (x+y)^0 =1=C_0 ^0 x^0 y^0 =1  suppose ∀n∈N (x+y)^n =ΣC_k ^n x^((n−k)) y^k   (x+y)^(n+1) =(x+y)^n .(x+y−n)  ={ΣC_n ^k x^((n−k)) y^((k)) }(x+y−n)  n=(n−k)+k  (x+y−n)=(x−(n−k)+y−k)  ⇒Σ_(k=0) ^n C_n ^k x^((n−k)) .y^((k)) .(x−(n−k))+Σ_(k=0) ^n C_n ^k x^((n−k)) y^k .(y−k)  =Σ_(k=0) ^n C_n ^k x^((n−k)) .(x−(n−k)).y^k +Σ_(k=0) ^n C_n ^k x^((n−k)) .y^k .(y−k)  x^((n−k)) (x−(n−k))=x^((n+1−k))   y^k .(y−k)=y^((k+1))   =Σ_(k=0) ^n C_n ^k x^((n+1−k)) y^k +Σ_(k=0) ^n C_n ^k x^((n−k)) y^(k+1)   k→k+1 in 2nd   =Σ_(k=0) ^n C_n ^k x^((n+1−k)) y^k +Σ_(k=1) ^(n+1) C_n ^(k−1) x^((n−k+1)) y^((k))   =Σ_(k=1) ^n (C_n ^k +C_n ^k )x^((n+1−k)) y^((k)) +C_0 ^0 x^((n+1)) y^0 +C_n ^n x^0 y^((n+1))   C_n ^n x^0 y^((n+1)) =C_(n+1) ^(n+1) x^((n+1−(n+1))) y^((n+1))   C_n ^0 x^(n+1) y^0 =C_(n+1) ^0 .x^((n+1−0)) y^((0))   C_n ^k +C_n ^(k−1) =((n!)/(k!(n−k)!)).((n!)/((k−1)!.(n−k+1)!))=((n!.(n+1−k)+n!.k)/(k!(n+1−k)!))  =(((n+1)!)/(k!(n+1−k)!))=C_(n+1) ^k   =Σ_(k=1) ^n C_(n+1) ^k x^((n+1−k)) y^k +C_(n+1) ^0 x^(n+1) y^0 +C_(n+1) ^(n+1) x^((n+1−(n+1))) y^(n+1)   =Σ_(k=0) ^(n+1) x^((n+1−k)) y^((k)) =(x+y)^(n+1)

forn=0(x+y)0=1=C00x0y0=1supposenN(x+y)n=ΣCknx(nk)yk(x+y)n+1=(x+y)n.(x+yn)={ΣCnkx(nk)y(k)}(x+yn)n=(nk)+k(x+yn)=(x(nk)+yk)nk=0Cnkx(nk).y(k).(x(nk))+nk=0Cnkx(nk)yk.(yk)=nk=0Cnkx(nk).(x(nk)).yk+nk=0Cnkx(nk).yk.(yk)x(nk)(x(nk))=x(n+1k)yk.(yk)=y(k+1)=nk=0Cnkx(n+1k)yk+nk=0Cnkx(nk)yk+1kk+1in2nd=nk=0Cnkx(n+1k)yk+n+1k=1Cnk1x(nk+1)y(k)=nk=1(Cnk+Cnk)x(n+1k)y(k)+C00x(n+1)y0+Cnnx0y(n+1)Cnnx0y(n+1)=Cn+1n+1x(n+1(n+1))y(n+1)Cn0xn+1y0=Cn+10.x(n+10)y(0)Cnk+Cnk1=n!k!(nk)!.n!(k1)!.(nk+1)!=n!.(n+1k)+n!.kk!(n+1k)!=(n+1)!k!(n+1k)!=Cn+1k=nk=1Cn+1kx(n+1k)yk+Cn+10xn+1y0+Cn+1n+1x(n+1(n+1))yn+1=n+1k=0x(n+1k)y(k)=(x+y)n+1

Commented by mathmax by abdo last updated on 05/Nov/19

thank you sir.

thankyousir.

Commented by mind is power last updated on 06/Nov/19

most welcom

mostwelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com