Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73037 by aliesam last updated on 05/Nov/19

Commented by mathmax by abdo last updated on 06/Nov/19

1) I_0 =∫_0 ^1  e^(1−x) dx =[−e^(1−x) ]_0 ^1 =e−1  I_1 =∫_0 ^1 x e^(1−x)  dx =_(by parts)   [−xe^(1−x) ]_0 ^1 −∫_0 ^1 (−e^(1−x) )dx  =−1+e−1 =e−2  2) I_(n+1) =∫_0 ^1  x^(n+1)  e^(1−x) dx =e ∫_0 ^1  x^(n+1)  e^(−x)  dx by parts u=x^(n+1)  and  v^, =e^(−x)  ⇒∫_0 ^1  x^(n+1)  e^(−x ) dx =[−x^(n+1) e^(−x) ]_0 ^1  −∫_0 ^1  (n+1)x^n (−e^(−x) )dx  =−e^(−1)  +(n+1) ∫_0 ^1  x^n  e^(−x)  dx ⇒I_(n+1) =e(−e^(−1)  +(n+1)∫_0 ^1  x^n  e^(−x) dx)  =−1+(n+1)∫_0 ^1  x^n  e^(1−x) dx =(n+1)I_n −1 ⇒  I_(n+1) =(n+1)I_n −1     remrk   we have I_n =nI_(n−1) −1  for n≥1  let  V_n =(I_n /(n!)) ⇒V_(n+1) =(I_(n+1) /((n+1)!)) =(((n+1)I_n )/((n+1)!)) −1  =(I_n /(n!))−1 =V_n −1 ⇒V_(n+1) −V_n =−1 ⇒Σ_(k=0) ^(n−1)  (V_(k+1) −V_k )=−n ⇒  V_n −V_0 =−n ⇒V_n =V_0 −n =e−1−n ⇒(I_n /(n!)) =e−1−n ⇒  I_n =n!{e−1−n}

1)I0=01e1xdx=[e1x]01=e1I1=01xe1xdx=byparts[xe1x]0101(e1x)dx=1+e1=e22)In+1=01xn+1e1xdx=e01xn+1exdxbypartsu=xn+1andv,=ex01xn+1exdx=[xn+1ex]0101(n+1)xn(ex)dx=e1+(n+1)01xnexdxIn+1=e(e1+(n+1)01xnexdx)=1+(n+1)01xne1xdx=(n+1)In1In+1=(n+1)In1remrkwehaveIn=nIn11forn1letVn=Inn!Vn+1=In+1(n+1)!=(n+1)In(n+1)!1=Inn!1=Vn1Vn+1Vn=1k=0n1(Vk+1Vk)=nVnV0=nVn=V0n=e1nInn!=e1nIn=n!{e1n}

Answered by mind is power last updated on 05/Nov/19

I_0 =∫_0 ^1 e^(1−x) dx=[−e^(1−x) ]_0 ^1 =e−1  I_1 =∫_0 ^1 xe^(1−x) dx=[−xe^(1−x) ]_0 ^1 +∫e^(1−x) dx  =−1+e−1=e−2  I_(n+1) =∫_0 ^1 x^(n+1) e^(1−x) =[−x^(n+1) e^(1−x) ]_0 ^1 +(n+1)∫_0 ^1 x^n e^(1−x) dx  integration by part  =−1+(n+1)∫_0 ^1 x^n e^(1−x) dx=−1+(n+1)I_n   I_3 =3I_2 −1  I_2 =2I_1 −1=2(e−2)−1=2e−5  I_3 =3(2e−5)−1=6e−16

I0=01e1xdx=[e1x]01=e1I1=01xe1xdx=[xe1x]01+e1xdx=1+e1=e2In+1=01xn+1e1x=[xn+1e1x]01+(n+1)01xne1xdxintegrationbypart=1+(n+1)01xne1xdx=1+(n+1)InI3=3I21I2=2I11=2(e2)1=2e5I3=3(2e5)1=6e16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com