All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 73037 by aliesam last updated on 05/Nov/19
Commented by mathmax by abdo last updated on 06/Nov/19
1)I0=∫01e1−xdx=[−e1−x]01=e−1I1=∫01xe1−xdx=byparts[−xe1−x]01−∫01(−e1−x)dx=−1+e−1=e−22)In+1=∫01xn+1e1−xdx=e∫01xn+1e−xdxbypartsu=xn+1andv,=e−x⇒∫01xn+1e−xdx=[−xn+1e−x]01−∫01(n+1)xn(−e−x)dx=−e−1+(n+1)∫01xne−xdx⇒In+1=e(−e−1+(n+1)∫01xne−xdx)=−1+(n+1)∫01xne1−xdx=(n+1)In−1⇒In+1=(n+1)In−1remrkwehaveIn=nIn−1−1forn⩾1letVn=Inn!⇒Vn+1=In+1(n+1)!=(n+1)In(n+1)!−1=Inn!−1=Vn−1⇒Vn+1−Vn=−1⇒∑k=0n−1(Vk+1−Vk)=−n⇒Vn−V0=−n⇒Vn=V0−n=e−1−n⇒Inn!=e−1−n⇒In=n!{e−1−n}
Answered by mind is power last updated on 05/Nov/19
I0=∫01e1−xdx=[−e1−x]01=e−1I1=∫01xe1−xdx=[−xe1−x]01+∫e1−xdx=−1+e−1=e−2In+1=∫01xn+1e1−x=[−xn+1e1−x]01+(n+1)∫01xne1−xdxintegrationbypart=−1+(n+1)∫01xne1−xdx=−1+(n+1)InI3=3I2−1I2=2I1−1=2(e−2)−1=2e−5I3=3(2e−5)−1=6e−16
Terms of Service
Privacy Policy
Contact: info@tinkutara.com