Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 73040 by mathmax by abdo last updated on 05/Nov/19

prove that  ∀(n,p)∈N^★ ×N  1)Σ_(k=0) ^p  (−1)^k  C_n ^k  =(−1)^p  C_(n−1) ^p   2)∀(p,q)∈N^2     Σ_(k=0) ^p  C_(p+q) ^k  C_(p+q−k) ^(p−k)   =2^p  C_(p+q) ^p

$${prove}\:{that}\:\:\forall\left({n},{p}\right)\in{N}^{\bigstar} ×{N} \\ $$$$\left.\mathrm{1}\right)\sum_{{k}=\mathrm{0}} ^{{p}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:=\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}−\mathrm{1}} ^{{p}} \\ $$$$\left.\mathrm{2}\right)\forall\left({p},{q}\right)\in{N}^{\mathrm{2}} \:\:\:\:\sum_{{k}=\mathrm{0}} ^{{p}} \:{C}_{{p}+{q}} ^{{k}} \:{C}_{{p}+{q}−{k}} ^{{p}−{k}} \:\:=\mathrm{2}^{{p}} \:{C}_{{p}+{q}} ^{{p}} \\ $$

Answered by mind is power last updated on 06/Nov/19

1) recursion  2 nd  lets A=[1,,,p+q]  in A we can get  C_(p+q) ^p  set withe p elements  the number of idont now the nam in inglish  ′′A={1,2}/P(A)={∅,{1},{2},{1,2}}′′  if A is card p⇒P(A)=2^p   sl the number all partition of set withe p element is 2^p C_(p+q) ^p   we can chose this element  we pick k element in p+q  and    p−k in  p+q−k   ⇒=Σ_(k=0) ^p C_(p+q) ^k C_(p+q−k) ^(p−k) =2^p C_(p+q) ^p

$$\left.\mathrm{1}\right)\:\mathrm{recursion} \\ $$$$\mathrm{2}\:\mathrm{nd} \\ $$$$\mathrm{lets}\:\mathrm{A}=\left[\mathrm{1},,,\mathrm{p}+\mathrm{q}\right] \\ $$$$\mathrm{in}\:\mathrm{A}\:\mathrm{we}\:\mathrm{can}\:\mathrm{get} \\ $$$$\mathrm{C}_{\mathrm{p}+\mathrm{q}} ^{\mathrm{p}} \:\mathrm{set}\:\mathrm{withe}\:\mathrm{p}\:\mathrm{elements} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{idont}\:\mathrm{now}\:\mathrm{the}\:\mathrm{nam}\:\mathrm{in}\:\mathrm{inglish} \\ $$$$''\mathrm{A}=\left\{\mathrm{1},\mathrm{2}\right\}/\mathrm{P}\left(\mathrm{A}\right)=\left\{\varnothing,\left\{\mathrm{1}\right\},\left\{\mathrm{2}\right\},\left\{\mathrm{1},\mathrm{2}\right\}\right\}'' \\ $$$$\mathrm{if}\:\mathrm{A}\:\mathrm{is}\:\mathrm{card}\:\mathrm{p}\Rightarrow\mathrm{P}\left(\mathrm{A}\right)=\mathrm{2}^{\mathrm{p}} \\ $$$$\mathrm{sl}\:\mathrm{the}\:\mathrm{number}\:\mathrm{all}\:\mathrm{partition}\:\mathrm{of}\:\mathrm{set}\:\mathrm{withe}\:\mathrm{p}\:\mathrm{element}\:\mathrm{is}\:\mathrm{2}^{\mathrm{p}} \mathrm{C}_{\mathrm{p}+\mathrm{q}} ^{\mathrm{p}} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{chose}\:\mathrm{this}\:\mathrm{element} \\ $$$$\mathrm{we}\:\mathrm{pick}\:\mathrm{k}\:\mathrm{element}\:\mathrm{in}\:\mathrm{p}+\mathrm{q} \\ $$$$\mathrm{and}\:\:\:\:\mathrm{p}−\mathrm{k}\:\mathrm{in}\:\:\mathrm{p}+\mathrm{q}−\mathrm{k}\: \\ $$$$\Rightarrow=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{p}} {\sum}}\mathrm{C}_{\mathrm{p}+\mathrm{q}} ^{\mathrm{k}} \mathrm{C}_{\mathrm{p}+\mathrm{q}−\mathrm{k}} ^{\mathrm{p}−\mathrm{k}} =\mathrm{2}^{\mathrm{p}} \mathrm{C}_{\mathrm{p}+\mathrm{q}} ^{\mathrm{p}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com