Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 73043 by mathmax by abdo last updated on 05/Nov/19

prove that H_n =Σ_(k=1) ^n  (((−1)^(k+1) )/k)×C_n ^k   H_n =Σ_(k=1) ^n  (1/k)

$${prove}\:{that}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{{k}}×{C}_{{n}} ^{{k}} \\ $$$${H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$

Commented by mind is power last updated on 06/Nov/19

B(1,n)=(1/n) mad this in my anwer .i put (1/(n+1)) but i took (1/n)  i csn′t change is pictur that i saved

$$\mathrm{B}\left(\mathrm{1},\mathrm{n}\right)=\frac{\mathrm{1}}{\mathrm{n}}\:\mathrm{mad}\:\mathrm{this}\:\mathrm{in}\:\mathrm{my}\:\mathrm{anwer}\:.\mathrm{i}\:\mathrm{put}\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\:\mathrm{but}\:\mathrm{i}\:\mathrm{took}\:\frac{\mathrm{1}}{\mathrm{n}} \\ $$$$\mathrm{i}\:\mathrm{csn}'\mathrm{t}\:\mathrm{change}\:\mathrm{is}\:\mathrm{pictur}\:\mathrm{that}\:\mathrm{i}\:\mathrm{saved} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 06/Nov/19

let p(x) =Σ_(k=1) ^n  (((−1)^(k−1) )/k)C_n ^k  x^k  ⇒  p^′ (x)=Σ_(k=1) ^n  (((−1)^(k−1) )/k) C_n ^k  kx^(k−1)  =Σ_(k=1) ^n  C_n ^k (−x)^(k−1)   =−(1/x)Σ_(k=1) ^n  C_n ^k (−x)^k  =−(1/x){(1−x)^n −1} =((1−(1−x)^n )/x) ⇒  p(x) =∫_0 ^x  ((1−(1−t)^n )/t)dt +c  (c=p(0)=0) ⇒  p(x)=∫_0 ^x  ((1−(1−t)^n )/t)dt  ⇒p(1)=Σ_(k=1) ^n  (((−1)^(k−1) )/k)C_n ^k  =∫_0 ^1  ((1−(1−t)^n )/t)dt  =_(1−t =u)     −∫_0 ^1  ((1−u^n )/(1−u))(−du) =∫_0 ^1  ((1−u^n )/(1−u))du  =∫_0 ^1  (((1−u)(1+u+u^2 +...+u^(n−1) ))/(1−u))du  =∫_0 ^1 (Σ_(k=0) ^(n−1)  u^k )du =Σ_(k=0) ^(n−1)  ∫_0 ^1  u^k  du =Σ_(k=0) ^(n−1)  (1/(k+1))  =Σ_(k=1) ^n  (1/k) =H_n  so H_n =Σ_(k=1) ^n  (((−1)^(k−1) )/k) C_n ^k

$${let}\:{p}\left({x}\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}{C}_{{n}} ^{{k}} \:{x}^{{k}} \:\Rightarrow \\ $$$${p}^{'} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:{C}_{{n}} ^{{k}} \:{kx}^{{k}−\mathrm{1}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−{x}\right)^{{k}−\mathrm{1}} \\ $$$$=−\frac{\mathrm{1}}{{x}}\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−{x}\right)^{{k}} \:=−\frac{\mathrm{1}}{{x}}\left\{\left(\mathrm{1}−{x}\right)^{{n}} −\mathrm{1}\right\}\:=\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}\:\Rightarrow \\ $$$${p}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:+{c}\:\:\left({c}={p}\left(\mathrm{0}\right)=\mathrm{0}\right)\:\Rightarrow \\ $$$${p}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:\:\Rightarrow{p}\left(\mathrm{1}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}{C}_{{n}} ^{{k}} \:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt} \\ $$$$=_{\mathrm{1}−{t}\:={u}} \:\:\:\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{u}^{{n}} }{\mathrm{1}−{u}}\left(−{du}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{u}^{{n}} }{\mathrm{1}−{u}}{du} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{1}−{u}\right)\left(\mathrm{1}+{u}+{u}^{\mathrm{2}} +...+{u}^{{n}−\mathrm{1}} \right)}{\mathrm{1}−{u}}{du} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{u}^{{k}} \right){du}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{u}^{{k}} \:{du}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}} \:{so}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:{C}_{{n}} ^{{k}} \\ $$

Answered by mind is power last updated on 06/Nov/19

Commented by mathmax by abdo last updated on 06/Nov/19

thank you sir for this hardwork.

$${thank}\:{you}\:{sir}\:{for}\:{this}\:{hardwork}. \\ $$

Commented by mind is power last updated on 06/Nov/19

withe plesur

$$\mathrm{withe}\:\mathrm{plesur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com