Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 73059 by mathmax by abdo last updated on 05/Nov/19

let P_n (x)=(x+1)^n −(x−1)^n   1) fartorize inside C(x) P_n (x)  2)calculate Π_(k=1) ^p  cotan(((kπ)/(2p+1)))

letPn(x)=(x+1)n(x1)n1)fartorizeinsideC(x)Pn(x)2)calculatek=1pcotan(kπ2p+1)

Commented by mathmax by abdo last updated on 06/Nov/19

1) P_n (x)=0 ⇔(x+1)^n =(x−1)^n  ⇔(((x−1)/(x+1)))^n =1 let z=((x−1)/(x+1))  (e) ⇒z^n =1 ⇒z^n =e^(i2kπ)  ⇒z_k =e^((i2kπ)/n)   and k∈[[0,n−1]]  z=((x−1)/(x+1)) ⇒zx+z =x−1 ⇒(z−1)x=−z−1 ⇒x=((1+z)/(1−z)) ⇒  the roots of P_n (x)=0 are x_k =((1+z_k )/(1−z_k )) =((1+e^((i2kπ)/n) )/(1−e^((i2kπ)/n) ))  =((1+cos(((2kπ)/n))+isin(((2kπ)/n)))/(1−cos(((2kπ)/n))−isin(((2kπ)/n)))) =((2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n)))/(2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n))))  =((cos(((kπ)/n))e^(i((kπ)/n)) )/(−isin(((kπ)/n))e^((ikπ)/n) )) =i cotan(((kπ)/n))  ⇒x_k =i cotan(((kπ)/n))  with k∈[[1,n−1]] and P_n (x)=aΠ_(k=1) ^(n−1) (x−icotan(((kπ)/n)))  letfind a  we have P_n (x)=Σ_(k=0) ^n  C_n ^k  x^k −Σ_(k=0) ^n  C_n ^k x^k  (−1)^(n−k)   =Σ_(k=0) ^n  { 1−(−1)^(n−k) }C_n ^k  x^k  ⇒a =2 C_n ^(n−1) =2n ⇒  P_n (x)=2nΠ_(k=1) ^(n−1) (x−i cotan(((kπ)/n)))  ⇒P_(2n+1) (x) =2(2n+1)Π_(k=1) ^(2n) (x−icotan(((kπ)/(2n+1)))) ⇒  P_(2n+1) (0) =2(2n+1)Π_(k=1) ^(2n) (−icotan(((kπ)/(2n+1))))  =2(2n+1)(−i)^(2n)  Π_(k=1) ^(2n)  cotan(((kπ)/(2n+1))) and P_n (0)=1−(−1)^n   ⇒P_(2n+1) (0) =2 ⇒(2n+1)(−1)^n  Π_(k=1) ^(2n)  cotan(((kπ)/(2n+1)))=1 ⇒  (−1)^n Π_(k=1) ^(2n)  cotan(((kπ)/(2n+1)))=(1/(2n+1))  we have  Π_(k=1) ^(2n)  cotan(((kπ)/(2n+1)))=Π_(k=1) ^n  cotan(((kπ)/(2n+1)))Π_(k=n+1) ^(2n)  cotan(((kπ)/(2n+1)))  =_(k−n=p)    Π_(k=1) ^n  cotan(((kπ)/(2n+1)))×Π_(p=1) ^n  cotan((((n+p)π)/(2n+1)))  rest to prove thst   Π_(p=1) ^n  cotan((((n+p)π)/(2n+1)))=(−1)^n Π_(p=1) ^(n ) cotan(((pπ)/(2n+1)))  ⇒(Π_(k=1) ^n  cotan(((kπ)/(2n+1))))^2  =(1/(2n+1)) ⇒Π_(k=1) ^n  cotan(((kπ)/(2n+1)))=(1/(√(2n+1)))

1)Pn(x)=0(x+1)n=(x1)n(x1x+1)n=1letz=x1x+1(e)zn=1zn=ei2kπzk=ei2kπnandk[[0,n1]]z=x1x+1zx+z=x1(z1)x=z1x=1+z1ztherootsofPn(x)=0arexk=1+zk1zk=1+ei2kπn1ei2kπn=1+cos(2kπn)+isin(2kπn)1cos(2kπn)isin(2kπn)=2cos2(kπn)+2isin(kπn)cos(kπn)2sin2(kπn)2isin(kπn)cos(kπn)=cos(kπn)eikπnisin(kπn)eikπn=icotan(kπn)xk=icotan(kπn)withk[[1,n1]]andPn(x)=ak=1n1(xicotan(kπn))letfindawehavePn(x)=k=0nCnkxkk=0nCnkxk(1)nk=k=0n{1(1)nk}Cnkxka=2Cnn1=2nPn(x)=2nk=1n1(xicotan(kπn))P2n+1(x)=2(2n+1)k=12n(xicotan(kπ2n+1))P2n+1(0)=2(2n+1)k=12n(icotan(kπ2n+1))=2(2n+1)(i)2nk=12ncotan(kπ2n+1)andPn(0)=1(1)nP2n+1(0)=2(2n+1)(1)nk=12ncotan(kπ2n+1)=1(1)nk=12ncotan(kπ2n+1)=12n+1wehavek=12ncotan(kπ2n+1)=k=1ncotan(kπ2n+1)k=n+12ncotan(kπ2n+1)=kn=pk=1ncotan(kπ2n+1)×p=1ncotan((n+p)π2n+1)resttoprovethstp=1ncotan((n+p)π2n+1)=(1)np=1ncotan(pπ2n+1)(k=1ncotan(kπ2n+1))2=12n+1k=1ncotan(kπ2n+1)=12n+1

Commented by mind is power last updated on 06/Nov/19

nice

nice

Commented by mathmax by abdo last updated on 06/Nov/19

thanks sir.

thankssir.

Answered by mind is power last updated on 06/Nov/19

p_n (x)=0⇒((x+1)/(x−1))=e^((2ikπ)/n) ,k≤n    ⇒x(1−e^((2ikπ)/n) )=−e^((2ikπ)/n) −1  ⇒k≠0  x=((e^((2ikπ)/n) +1)/(e^((2ikπ)/n) −1))=((e^(i((kπ)/n)) (2cos(((kπ)/n))))/(e^(i((kπ)/n)) (2isin(((kπ)/n)))))=−icot(((kπ)/n))  p_n (x)=aΠ_(k=1) ^(n−1) (x+icot(((kπ)/n))  let n=2p+1  p_n (x)=Π_(k=1) ^(2p) (x+icot(((kπ)/(2p+1))))  =Π_(k=1) ^p (x+icot(((kπ)/(2p+1)))).Π_(k=p+1) ^(2p) (x+icot(((kπ)/(2p+1)))  =Π_(k=1) ^p (x+icot(((kπ)/(2p+1)))).Π_(k=0) ^(p−1) (x+icot(((2p−k)π)/(2p+1))))  =Π_(k=1) ^p (x+icot(((kπ)/(2p+1))))Π_(k=0) ^(p−1) (x−icot(((k+1)/(2p+1)))π)=(1+x)^n −(x−1)^n     pour x=0  onaΠ_(k=1) ^p (icot(((kπ)/(2p+1))))(Π_(k=1) ^p −icot(((kπ)/(2p+1))))=  ⇒{Π_(k=1) ^p cot(((kπ)/(2p+1)))}^2 =(2/a)  ⇒Π_(k=1) ^p cot(((kπ)/(2p+1)))=(√(2/a))=(1/(√(2p+1)))  a=2C_n ^1 =2n=4p+2  cause ∀k∈[1,n] 0<  ((kπ)/(2p+1))<(π/2)⇒cot(((kπ)/(2p+1)))>0

pn(x)=0x+1x1=e2ikπn,knx(1e2ikπn)=e2ikπn1k0x=e2ikπn+1e2ikπn1=eikπn(2cos(kπn))eikπn(2isin(kπn))=icot(kπn)pn(x)=an1k=1(x+icot(kπn)letn=2p+1pn(x)=2pk=1(x+icot(kπ2p+1))=pk=1(x+icot(kπ2p+1)).2pk=p+1(x+icot(kπ2p+1)=pk=1(x+icot(kπ2p+1)).p1k=0(x+icot(2pk)π2p+1))=pk=1(x+icot(kπ2p+1))p1k=0(xicot(k+12p+1)π)=(1+x)n(x1)npourx=0onapk=1(icot(kπ2p+1))(pk=1icot(kπ2p+1))={pk=1cot(kπ2p+1)}2=2apk=1cot(kπ2p+1)=2a=12p+1a=2Cn1=2n=4p+2causek[1,n]0<kπ2p+1<π2cot(kπ2p+1)>0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com