Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 73080 by oyemi kemewari last updated on 06/Nov/19

y′′=e^y   pls solve

$$\mathrm{y}''=\mathrm{e}^{\mathrm{y}} \\ $$$$\mathrm{pls}\:\mathrm{solve} \\ $$

Answered by mind is power last updated on 06/Nov/19

y′′.y′=y′e^y   ⇒(y′)^2 =2e^y +c  ⇒y′ { ((√(2e^y +c))),((−(√(2e^y +c)))) :}  y′=(√(2e^y +c))  ⇔(dy/(√(2e^y +c)))=dx  ⇔∫((e^(−(y/2)) dy)/((√2)(√(1+(c/2)e^(−y) ))))=x+b  ∫(dx/(√(1+x^2 )))=argsh(x)  if c≥0  (√(c/2))e^(−(y/2)) =w⇒dw=−(1/2)w  ∫(1/(−2(√c))).(dw/(√(1+w^2 )))=−(1/(2(√c)))argsh(w)=−((argsh(((√c)/(√2))e^(−(y/2)) ))/(2(√c)))  if c≤0  ∫(dx/(√(1−x^2 )))=arcsin(x)  ⇒∫(e^(−(y/2)) /((√2)(√(1+(c/2)e^(−y) ))))  w=(√(−(c/2)))e^(−(y/2))   ∫(dw/(−2(√(−c))((√(1−w^2 )))))=−((arcsin(w))/(2(√(−c))))=−((arcsin((√((−c)/2))e^((−y)/2) ))/(2(√(−c))))  c≥0⇒−((argsh((√(c/2)).e^((−y)/2) ))/(2(√c)))=x+b  ⇒argsh((√(c/2))e^((−y)/2) )=−2(√c)(x+b)  ⇒y=−2ln{(√(2/c)).sh(−2(√c)(x+b))}  −2(√c)(x+b)≥0⇒x≥−b  c≤0  y=−2ln{(2/(√(−c)))(sin(−2(√(−c))(x+b)).}  2kπ<−2(√(−c))(x+b)<(2k+1)π  because ln(x) is defind in x>0  ⇒          x∈]((2k+1)/(−2(√(−c))))π_ −b,((2kπ)/(−2(√(−c))))−b[ for a given integer k

$$\mathrm{y}''.\mathrm{y}'=\mathrm{y}'\mathrm{e}^{\mathrm{y}} \\ $$$$\Rightarrow\left(\mathrm{y}'\right)^{\mathrm{2}} =\mathrm{2e}^{\mathrm{y}} +\mathrm{c} \\ $$$$\Rightarrow\mathrm{y}'\begin{cases}{\sqrt{\mathrm{2e}^{\mathrm{y}} +\mathrm{c}}}\\{−\sqrt{\mathrm{2e}^{\mathrm{y}} +\mathrm{c}}}\end{cases} \\ $$$$\mathrm{y}'=\sqrt{\mathrm{2e}^{\mathrm{y}} +\mathrm{c}} \\ $$$$\Leftrightarrow\frac{\mathrm{dy}}{\sqrt{\mathrm{2e}^{\mathrm{y}} +\mathrm{c}}}=\mathrm{dx} \\ $$$$\Leftrightarrow\int\frac{\mathrm{e}^{−\frac{\mathrm{y}}{\mathrm{2}}} \mathrm{dy}}{\sqrt{\mathrm{2}}\sqrt{\mathrm{1}+\frac{\mathrm{c}}{\mathrm{2}}\mathrm{e}^{−\mathrm{y}} }}=\mathrm{x}+\mathrm{b} \\ $$$$\int\frac{\mathrm{dx}}{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}=\mathrm{argsh}\left(\mathrm{x}\right) \\ $$$$\mathrm{if}\:\mathrm{c}\geqslant\mathrm{0} \\ $$$$\sqrt{\frac{\mathrm{c}}{\mathrm{2}}}\mathrm{e}^{−\frac{\mathrm{y}}{\mathrm{2}}} =\mathrm{w}\Rightarrow\mathrm{dw}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{w} \\ $$$$\int\frac{\mathrm{1}}{−\mathrm{2}\sqrt{\mathrm{c}}}.\frac{\mathrm{dw}}{\sqrt{\mathrm{1}+\mathrm{w}^{\mathrm{2}} }}=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{c}}}\mathrm{argsh}\left(\mathrm{w}\right)=−\frac{\mathrm{argsh}\left(\frac{\sqrt{\mathrm{c}}}{\sqrt{\mathrm{2}}}\mathrm{e}^{−\frac{\mathrm{y}}{\mathrm{2}}} \right)}{\mathrm{2}\sqrt{\mathrm{c}}} \\ $$$$\mathrm{if}\:\mathrm{c}\leqslant\mathrm{0} \\ $$$$\int\frac{\mathrm{dx}}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}=\mathrm{arcsin}\left(\mathrm{x}\right) \\ $$$$\Rightarrow\int\frac{\mathrm{e}^{−\frac{\mathrm{y}}{\mathrm{2}}} }{\sqrt{\mathrm{2}}\sqrt{\mathrm{1}+\frac{\mathrm{c}}{\mathrm{2}}\mathrm{e}^{−\mathrm{y}} }} \\ $$$$\mathrm{w}=\sqrt{−\frac{\mathrm{c}}{\mathrm{2}}}\mathrm{e}^{−\frac{\mathrm{y}}{\mathrm{2}}} \\ $$$$\int\frac{\mathrm{dw}}{−\mathrm{2}\sqrt{−\mathrm{c}}\left(\sqrt{\mathrm{1}−\mathrm{w}^{\mathrm{2}} }\right)}=−\frac{\mathrm{arcsin}\left(\mathrm{w}\right)}{\mathrm{2}\sqrt{−\mathrm{c}}}=−\frac{\mathrm{arcsin}\left(\sqrt{\frac{−\mathrm{c}}{\mathrm{2}}}\mathrm{e}^{\frac{−\mathrm{y}}{\mathrm{2}}} \right)}{\mathrm{2}\sqrt{−\mathrm{c}}} \\ $$$$\mathrm{c}\geqslant\mathrm{0}\Rightarrow−\frac{\mathrm{argsh}\left(\sqrt{\frac{\mathrm{c}}{\mathrm{2}}}.\mathrm{e}^{\frac{−\mathrm{y}}{\mathrm{2}}} \right)}{\mathrm{2}\sqrt{\mathrm{c}}}=\mathrm{x}+\mathrm{b} \\ $$$$\Rightarrow\mathrm{argsh}\left(\sqrt{\frac{\mathrm{c}}{\mathrm{2}}}\mathrm{e}^{\frac{−\mathrm{y}}{\mathrm{2}}} \right)=−\mathrm{2}\sqrt{\mathrm{c}}\left(\mathrm{x}+\mathrm{b}\right) \\ $$$$\Rightarrow\mathrm{y}=−\mathrm{2ln}\left\{\sqrt{\frac{\mathrm{2}}{\mathrm{c}}}.\mathrm{sh}\left(−\mathrm{2}\sqrt{\mathrm{c}}\left(\mathrm{x}+\mathrm{b}\right)\right)\right\} \\ $$$$−\mathrm{2}\sqrt{\mathrm{c}}\left(\mathrm{x}+\mathrm{b}\right)\geqslant\mathrm{0}\Rightarrow\mathrm{x}\geqslant−\mathrm{b} \\ $$$$\mathrm{c}\leqslant\mathrm{0} \\ $$$$\mathrm{y}=−\mathrm{2ln}\left\{\frac{\mathrm{2}}{\sqrt{−\mathrm{c}}}\left(\mathrm{sin}\left(−\mathrm{2}\sqrt{−\mathrm{c}}\left(\mathrm{x}+\mathrm{b}\right)\right).\right\}\right. \\ $$$$\mathrm{2k}\pi<−\mathrm{2}\sqrt{−\mathrm{c}}\left(\mathrm{x}+\mathrm{b}\right)<\left(\mathrm{2k}+\mathrm{1}\right)\pi \\ $$$$\mathrm{because}\:\mathrm{ln}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{defind}\:\mathrm{in}\:\mathrm{x}>\mathrm{0} \\ $$$$\left.\Rightarrow\:\:\:\:\:\:\:\:\:\:\mathrm{x}\in\right]\frac{\mathrm{2k}+\mathrm{1}}{−\mathrm{2}\sqrt{−\mathrm{c}}}\pi_{} −\mathrm{b},\frac{\mathrm{2k}\pi}{−\mathrm{2}\sqrt{−\mathrm{c}}}−\mathrm{b}\left[\:\mathrm{for}\:\mathrm{a}\:\mathrm{given}\:\mathrm{integer}\:\mathrm{k}\right. \\ $$$$ \\ $$

Commented by oyemi kemewari last updated on 06/Nov/19

thanks so much

Commented by mind is power last updated on 06/Nov/19

y′re welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$

Commented by MJS last updated on 06/Nov/19

found this solution by trying, cannot show  the path  u=x+2ln (2/(2−e^x ))

$$\mathrm{found}\:\mathrm{this}\:\mathrm{solution}\:\mathrm{by}\:\mathrm{trying},\:\mathrm{cannot}\:\mathrm{show} \\ $$$$\mathrm{the}\:\mathrm{path} \\ $$$${u}={x}+\mathrm{2ln}\:\frac{\mathrm{2}}{\mathrm{2}−\mathrm{e}^{{x}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com