Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 7314 by Rasheed Soomro last updated on 23/Aug/16

Commented by Rasheed Soomro last updated on 23/Aug/16

Top and bottom of a solid are congruent circles.  Above is the cross-section of the solid, which   is obtained by cutting the solid in two equal parts.  Find out the volume of the solid.

$${Top}\:{and}\:{bottom}\:{of}\:{a}\:{solid}\:{are}\:{congruent}\:{circles}. \\ $$$${Above}\:{is}\:{the}\:{cross}-{section}\:{of}\:{the}\:{solid},\:{which}\: \\ $$$${is}\:{obtained}\:{by}\:{cutting}\:{the}\:{solid}\:{in}\:{two}\:{equal}\:{parts}. \\ $$$${Find}\:{out}\:{the}\:{volume}\:{of}\:{the}\:{solid}. \\ $$

Answered by Yozzia last updated on 24/Aug/16

Define the circle w with cartesian  equation x^2 +(y−r_1 )^2 =r_2 ^2  where r_1 >r_2 >0.  ⇒y=r_1 ±(√(r_2 ^2 −x^2 ))  {∣x∣≤r_2 }.  The problem given can be viewed as finding  the volume V of the figure generated  when a part of w, whose y coordinates  satisfy 0<y≤r_1 , is rotated 2π radians  about the x−axis.  ∴ y=r_1 −(√(r_2 ^2 −x^2 ))    {∣x∣≤r_2 }.  Using V=π∫_(−r_2 ) ^( r_2 ) y^2 dx we get  V=2π∫_0 ^r_2  (r_1 −(√(r_2 ^2 −x^2 )))^2 dx   {y^2  is even}.  V=2π∫_0 ^r_2  {r_1 ^2 +r_2 ^2 −x^2 −2r_1 (√(r_2 ^2 −x^2 ))}dx  Let x=r_2 sinθ  0≤θ≤2π.⇒dx=r_2 cosθdθ.  At x=0,θ=0 and at x=r_2 , θ=(π/2).  ∴V=2πr_2 ∫_0 ^(π/2) {r_1 ^2 +r_2 ^2 −r_2 ^2 sin^2 θ−2r_1 (√(r_2 ^2 −r_2 ^2 sin^2 θ))}cosθdθ  V=2πr_2 [∫_0 ^(π/2) (r_1 ^2 +r_2 ^2 )cosθ dθ−r_2 ^2 ∫_0 ^(π/2) sin^2 θcosθdθ−2r_1 r_2 ∫_0 ^(π/2) cos^2 θdθ]  V=2πr_2 [r_1 ^2 +r_2 ^2 −{((r_2 ^2 u^3 )/3)}_0 ^1 −r_1 r_2 ∫_0 ^(π/2) (1+cos2θ)dθ]  V=2πr_2 [r_1 ^2 +r_2 ^2 −(r_2 ^2 /3)−r_1 r_2 {θ+(1/2)sin2θ}_0 ^(π/2) ]  V=2πr_2 [r_1 ^2 +(2/3)r_2 ^2 −((r_1 r_2 π)/2)]  V=((πr_2 )/3)[6r_1 ^2 +4r_2 ^2 −3πr_1 r_2 ]  V=((2πr_2 )/3)(3r_1 ^2 +2r_2 ^2 )−π^2 r_1 r_2 ^2   V=2πr_1 ^2 r_2 +((4πr_2 ^3 )/3)−π^2 r_2 ^2 r_1   −−−−−−−−−−−−−−−−−−−−−−−−−−  By Pappus−Guldin theorem,                       V=2πAy^�      where A=area bounded between   y=r_1 −(√(r_2 ^2 −x^2 )), lines y=0, x=±r_2   and y^� =distance of centroid of A from  axis of rotation (y=0).  ∴ y^� =(V/(2πA)).  It can be shown that A=((r_2 (4r_1 −πr_2 ))/2).  ∴ y^� =((((πr_2 )/3)(6r_1 ^2 +4r_2 ^2 −3πr_1 r_2 ))/(2π((r_2 (4r_1 −πr_2 ))/2)))  or y^� =((6r_1 ^2 +4r_2 ^2 −3πr_1 r_2 )/(3(4r_1 −πr_2 )))

$${Define}\:{the}\:{circle}\:{w}\:{with}\:{cartesian} \\ $$$${equation}\:{x}^{\mathrm{2}} +\left({y}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} ={r}_{\mathrm{2}} ^{\mathrm{2}} \:{where}\:{r}_{\mathrm{1}} >{r}_{\mathrm{2}} >\mathrm{0}. \\ $$$$\Rightarrow{y}={r}_{\mathrm{1}} \pm\sqrt{{r}_{\mathrm{2}} ^{\mathrm{2}} −{x}^{\mathrm{2}} }\:\:\left\{\mid{x}\mid\leqslant{r}_{\mathrm{2}} \right\}. \\ $$$${The}\:{problem}\:{given}\:{can}\:{be}\:{viewed}\:{as}\:{finding} \\ $$$${the}\:{volume}\:{V}\:{of}\:{the}\:{figure}\:{generated} \\ $$$${when}\:{a}\:{part}\:{of}\:{w},\:{whose}\:{y}\:{coordinates} \\ $$$${satisfy}\:\mathrm{0}<{y}\leqslant{r}_{\mathrm{1}} ,\:{is}\:{rotated}\:\mathrm{2}\pi\:{radians} \\ $$$${about}\:{the}\:{x}−{axis}. \\ $$$$\therefore\:{y}={r}_{\mathrm{1}} −\sqrt{{r}_{\mathrm{2}} ^{\mathrm{2}} −{x}^{\mathrm{2}} }\:\:\:\:\left\{\mid{x}\mid\leqslant{r}_{\mathrm{2}} \right\}. \\ $$$${Using}\:{V}=\pi\int_{−{r}_{\mathrm{2}} } ^{\:{r}_{\mathrm{2}} } {y}^{\mathrm{2}} {dx}\:{we}\:{get} \\ $$$${V}=\mathrm{2}\pi\int_{\mathrm{0}} ^{{r}_{\mathrm{2}} } \left({r}_{\mathrm{1}} −\sqrt{{r}_{\mathrm{2}} ^{\mathrm{2}} −{x}^{\mathrm{2}} }\right)^{\mathrm{2}} {dx}\:\:\:\left\{{y}^{\mathrm{2}} \:{is}\:{even}\right\}. \\ $$$${V}=\mathrm{2}\pi\int_{\mathrm{0}} ^{{r}_{\mathrm{2}} } \left\{{r}_{\mathrm{1}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} −{x}^{\mathrm{2}} −\mathrm{2}{r}_{\mathrm{1}} \sqrt{{r}_{\mathrm{2}} ^{\mathrm{2}} −{x}^{\mathrm{2}} }\right\}{dx} \\ $$$${Let}\:{x}={r}_{\mathrm{2}} {sin}\theta\:\:\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi.\Rightarrow{dx}={r}_{\mathrm{2}} {cos}\theta{d}\theta. \\ $$$${At}\:{x}=\mathrm{0},\theta=\mathrm{0}\:{and}\:{at}\:{x}={r}_{\mathrm{2}} ,\:\theta=\frac{\pi}{\mathrm{2}}. \\ $$$$\therefore{V}=\mathrm{2}\pi{r}_{\mathrm{2}} \int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left\{{r}_{\mathrm{1}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} −{r}_{\mathrm{2}} ^{\mathrm{2}} {sin}^{\mathrm{2}} \theta−\mathrm{2}{r}_{\mathrm{1}} \sqrt{{r}_{\mathrm{2}} ^{\mathrm{2}} −{r}_{\mathrm{2}} ^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}\right\}{cos}\theta{d}\theta \\ $$$${V}=\mathrm{2}\pi{r}_{\mathrm{2}} \left[\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left({r}_{\mathrm{1}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} \right){cos}\theta\:{d}\theta−{r}_{\mathrm{2}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\pi/\mathrm{2}} {sin}^{\mathrm{2}} \theta{cos}\theta{d}\theta−\mathrm{2}{r}_{\mathrm{1}} {r}_{\mathrm{2}} \int_{\mathrm{0}} ^{\pi/\mathrm{2}} {cos}^{\mathrm{2}} \theta{d}\theta\right] \\ $$$${V}=\mathrm{2}\pi{r}_{\mathrm{2}} \left[{r}_{\mathrm{1}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} −\left\{\frac{{r}_{\mathrm{2}} ^{\mathrm{2}} {u}^{\mathrm{3}} }{\mathrm{3}}\right\}_{\mathrm{0}} ^{\mathrm{1}} −{r}_{\mathrm{1}} {r}_{\mathrm{2}} \int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\mathrm{1}+{cos}\mathrm{2}\theta\right){d}\theta\right] \\ $$$${V}=\mathrm{2}\pi{r}_{\mathrm{2}} \left[{r}_{\mathrm{1}} ^{\mathrm{2}} +{r}_{\mathrm{2}} ^{\mathrm{2}} −\frac{{r}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{3}}−{r}_{\mathrm{1}} {r}_{\mathrm{2}} \left\{\theta+\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}\theta\right\}_{\mathrm{0}} ^{\pi/\mathrm{2}} \right] \\ $$$${V}=\mathrm{2}\pi{r}_{\mathrm{2}} \left[{r}_{\mathrm{1}} ^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{3}}{r}_{\mathrm{2}} ^{\mathrm{2}} −\frac{{r}_{\mathrm{1}} {r}_{\mathrm{2}} \pi}{\mathrm{2}}\right] \\ $$$${V}=\frac{\pi{r}_{\mathrm{2}} }{\mathrm{3}}\left[\mathrm{6}{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{4}{r}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{3}\pi{r}_{\mathrm{1}} {r}_{\mathrm{2}} \right] \\ $$$${V}=\frac{\mathrm{2}\pi{r}_{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{3}{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{2}{r}_{\mathrm{2}} ^{\mathrm{2}} \right)−\pi^{\mathrm{2}} {r}_{\mathrm{1}} {r}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$${V}=\mathrm{2}\pi{r}_{\mathrm{1}} ^{\mathrm{2}} {r}_{\mathrm{2}} +\frac{\mathrm{4}\pi{r}_{\mathrm{2}} ^{\mathrm{3}} }{\mathrm{3}}−\pi^{\mathrm{2}} {r}_{\mathrm{2}} ^{\mathrm{2}} {r}_{\mathrm{1}} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${By}\:{Pappus}−{Guldin}\:{theorem}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{V}=\mathrm{2}\pi{A}\bar {{y}}\:\:\: \\ $$$${where}\:{A}={area}\:{bounded}\:{between}\: \\ $$$${y}={r}_{\mathrm{1}} −\sqrt{{r}_{\mathrm{2}} ^{\mathrm{2}} −{x}^{\mathrm{2}} },\:{lines}\:{y}=\mathrm{0},\:{x}=\pm{r}_{\mathrm{2}} \\ $$$${and}\:\bar {{y}}={distance}\:{of}\:{centroid}\:{of}\:{A}\:{from} \\ $$$${axis}\:{of}\:{rotation}\:\left({y}=\mathrm{0}\right). \\ $$$$\therefore\:\bar {{y}}=\frac{{V}}{\mathrm{2}\pi{A}}. \\ $$$${It}\:{can}\:{be}\:{shown}\:{that}\:{A}=\frac{{r}_{\mathrm{2}} \left(\mathrm{4}{r}_{\mathrm{1}} −\pi{r}_{\mathrm{2}} \right)}{\mathrm{2}}. \\ $$$$\therefore\:\bar {{y}}=\frac{\frac{\pi{r}_{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{6}{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{4}{r}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{3}\pi{r}_{\mathrm{1}} {r}_{\mathrm{2}} \right)}{\mathrm{2}\pi\frac{{r}_{\mathrm{2}} \left(\mathrm{4}{r}_{\mathrm{1}} −\pi{r}_{\mathrm{2}} \right)}{\mathrm{2}}} \\ $$$${or}\:\bar {{y}}=\frac{\mathrm{6}{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{4}{r}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{3}\pi{r}_{\mathrm{1}} {r}_{\mathrm{2}} }{\mathrm{3}\left(\mathrm{4}{r}_{\mathrm{1}} −\pi{r}_{\mathrm{2}} \right)} \\ $$$$ \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 24/Aug/16

THANKS! I am trying to understand. At the moment   I am not much involved in analytic approach.

$$\mathcal{THANKS}!\:{I}\:{am}\:{trying}\:{to}\:{understand}.\:{At}\:{the}\:{moment}\: \\ $$$${I}\:{am}\:{not}\:{much}\:{involved}\:{in}\:{analytic}\:{approach}. \\ $$

Commented by Yozzia last updated on 24/Aug/16

Commented by Yozzia last updated on 24/Aug/16

The volume you seek can be found  by rotating the lower section of the   circle x^2 +(y−r_1 )^2 =r_2 ^2    360° about  the x−axis. I have used full ink to  show the lower section and the upper  section is in broken ink.

$${The}\:{volume}\:{you}\:{seek}\:{can}\:{be}\:{found} \\ $$$${by}\:{rotating}\:{the}\:{lower}\:{section}\:{of}\:{the}\: \\ $$$${circle}\:{x}^{\mathrm{2}} +\left({y}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} ={r}_{\mathrm{2}} ^{\mathrm{2}} \:\:\:\mathrm{360}°\:{about} \\ $$$${the}\:{x}−{axis}.\:{I}\:{have}\:{used}\:{full}\:{ink}\:{to} \\ $$$${show}\:{the}\:{lower}\:{section}\:{and}\:{the}\:{upper} \\ $$$${section}\:{is}\:{in}\:{broken}\:{ink}. \\ $$

Commented by Rasheed Soomro last updated on 24/Aug/16

THαnkS Again! The graph and the comment  is great help in understanding your answer!  I had another idea:       Volume of cylinder−semi-circle gape around         Semi-circle gape=((πr_2 ^( 2) )/2)×circumference.  I was in confusion which circle-circumference  should be used. Circle with radius r_(1 ) or circle  with radius r_1 −r_2  or average of the both.  Perhaps I am not successful to clear my idea.

$$\mathcal{TH}\alpha{nk}\mathcal{S}\:\mathcal{A}{gain}!\:{The}\:{graph}\:{and}\:{the}\:{comment} \\ $$$${is}\:{great}\:{help}\:{in}\:{understanding}\:{your}\:{answer}! \\ $$$${I}\:{had}\:{another}\:{idea}: \\ $$$$\:\:\:\:\:{Volume}\:{of}\:{cylinder}−{semi}-{circle}\:{gape}\:{around}\: \\ $$$$\:\:\:\:\:\:{Semi}-{circle}\:{gape}=\frac{\pi{r}_{\mathrm{2}} ^{\:\mathrm{2}} }{\mathrm{2}}×{circumference}. \\ $$$${I}\:{was}\:{in}\:{confusion}\:{which}\:{circle}-{circumference} \\ $$$${should}\:{be}\:{used}.\:{Circle}\:{with}\:{radius}\:{r}_{\mathrm{1}\:} {or}\:{circle} \\ $$$${with}\:{radius}\:{r}_{\mathrm{1}} −{r}_{\mathrm{2}} \:{or}\:{average}\:{of}\:{the}\:{both}. \\ $$$${Perhaps}\:{I}\:{am}\:{not}\:{successful}\:{to}\:{clear}\:{my}\:{idea}. \\ $$

Commented by Yozzia last updated on 24/Aug/16

−−−−−−−−−−−−−−−−−−−−−−−−−  Centroid of semicircular area is ((4r_2 )/(3π)) from the center of straight edge.  ∴ Required distance=(r_1 −r_2 )+(r_2 −((4r_2 )/(3π)))=r_1 −((4r_2 )/(3π))  Circumference=2π(r_1 −((4r_2 )/(3π)))=2πr_1 −((8r_2 )/3)=c  volume=((πr_2 ^2 )/2)(2πr_1 −((8r_2 )/3))=π^2 r_1 r_2 ^2 −((4πr_2 ^3 )/3)  ⇒Required volume=2πr_1 ^2 r_2 −c=2πr_1 ^2 r_2 +((4πr_2 ^3 )/3)−π^2 r_1 r_2 ^2   as was found.

$$−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Centroid}\:{of}\:{semicircular}\:{area}\:{is}\:\frac{\mathrm{4}{r}_{\mathrm{2}} }{\mathrm{3}\pi}\:{from}\:{the}\:{center}\:{of}\:{straight}\:{edge}. \\ $$$$\therefore\:{Required}\:{distance}=\left({r}_{\mathrm{1}} −{r}_{\mathrm{2}} \right)+\left({r}_{\mathrm{2}} −\frac{\mathrm{4}{r}_{\mathrm{2}} }{\mathrm{3}\pi}\right)={r}_{\mathrm{1}} −\frac{\mathrm{4}{r}_{\mathrm{2}} }{\mathrm{3}\pi} \\ $$$${Circumference}=\mathrm{2}\pi\left({r}_{\mathrm{1}} −\frac{\mathrm{4}{r}_{\mathrm{2}} }{\mathrm{3}\pi}\right)=\mathrm{2}\pi{r}_{\mathrm{1}} −\frac{\mathrm{8}{r}_{\mathrm{2}} }{\mathrm{3}}={c} \\ $$$${volume}=\frac{\pi{r}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\pi{r}_{\mathrm{1}} −\frac{\mathrm{8}{r}_{\mathrm{2}} }{\mathrm{3}}\right)=\pi^{\mathrm{2}} {r}_{\mathrm{1}} {r}_{\mathrm{2}} ^{\mathrm{2}} −\frac{\mathrm{4}\pi{r}_{\mathrm{2}} ^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\Rightarrow{Required}\:{volume}=\mathrm{2}\pi{r}_{\mathrm{1}} ^{\mathrm{2}} {r}_{\mathrm{2}} −{c}=\mathrm{2}\pi{r}_{\mathrm{1}} ^{\mathrm{2}} {r}_{\mathrm{2}} +\frac{\mathrm{4}\pi{r}_{\mathrm{2}} ^{\mathrm{3}} }{\mathrm{3}}−\pi^{\mathrm{2}} {r}_{\mathrm{1}} {r}_{\mathrm{2}} ^{\mathrm{2}} \:\:{as}\:{was}\:{found}. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com