Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73144 by mathmax by abdo last updated on 06/Nov/19

calculte ∫  ((x+(√(2+x^2 )))/(x+1−(√(2+x^2 ))))dx

calcultex+2+x2x+12+x2dx

Commented by mathmax by abdo last updated on 07/Nov/19

I=∫ ((x+(√(2+x^2 )))/(x+1−(√(2+x^2 ))))dx changement x=(√2)sh(t) give  I =∫  (((√2)sh(t)+(√2)ch(t))/((√2)sh(t)+1−(√2)cht))(√2)cht dt  = ∫ (((2sh(t)ch(t)+ch^2 t))/((√2)sh(t)−(√2)ch(t)+1))dt =∫  ((sh(2t)+((1+ch(2t))/2))/((√2)sh(t)−(√2)ch(t)+1))dt  =∫  ((2sh(2t)+ch(2t)+1)/(2((√2)sh(t)−(√2)ch(t) +1)))dt  =(1/2)∫  ((2((e^(2t) −e^(−2t) )/2)+((e^(2t)  +e^(−2t) )/2) +1)/((√2)((e^t −e^(−t) )/2)−(√2)((e^t  +e^(−t) )/2)+1))dt  =(1/2) ∫   ((2e^(2t) −2e^(−2t)  +e^(2t)  +e^(−2t)  +2)/((√2)e^t −(√2)e^(−t) −(√2)e^t −(√2)e^(−t)  +2))dt ⇒  2I =∫  ((3e^(2t) −e^(−2t)  +2)/(−2(√2)e^(−t)  +2))dt =_(e^t =u)   ∫  ((3u^2 −u^(−2)  +2)/(2−2(√2)u^(−1) ))(du/u)  =∫  ((3u^2 −u^(−2) )/(2u−2(√2)))du =∫   ((3u^4 −1)/(2u^3 −2(√2)u))du ⇒  4I = ∫  ((3u^4 −1)/(u^3 −(√2)u))du =∫ ((3u(u^3 −(√2)u)+3(√2)u^2 −1)/(u^3 −(√2)u))du  =3u +∫  ((3(√2)u^2 −1)/(u(u^2 −(√2))))du  let decompose F(u)=((3(√2)u^2 −1)/(u(u^2 −(√2))))  ⇒F(u) =((3(√2)u^2 −1)/(u(u−α)(u+α)))  with α=^4 (√2)  F(u) =(a/u) +(b/(u−α)) +(c/(u+α))  a =((−1)/(−α^2 )) =(1/α^2 ) =(1/(√2))  b =((3(√2)α^2 −1)/(α(2α))) =((3(√2)α^2 −1)/(2α^2 ))  and c =((3(√2)α^2 −1)/((−α)(−2α))) =((3(√2)α^2 −1)/(2α^2 )) and  ∫ F(u)du =aln∣u∣+bln∣u−α∣+cln∣u+α∣ c  =at +bln∣e^t −α∣ +cln∣e^t  +α∣ +c   but t=argsh((x/(√2)))  =ln((x/(√2))+(√(1+(x^2 /2)))) ⇒  ∫F(u)du =a ln((x/2)+(√(1+(x^2 /2))))+b ln∣(x/(√2))+(√(1+(x^2 /2)))−α∣  +c ln∣(x/(√2))+(√(1+(x^2 /2)))+α∣ +c  so the value of I is known.

I=x+2+x2x+12+x2dxchangementx=2sh(t)giveI=2sh(t)+2ch(t)2sh(t)+12cht2chtdt=(2sh(t)ch(t)+ch2t)2sh(t)2ch(t)+1dt=sh(2t)+1+ch(2t)22sh(t)2ch(t)+1dt=2sh(2t)+ch(2t)+12(2sh(t)2ch(t)+1)dt=122e2te2t2+e2t+e2t2+12etet22et+et2+1dt=122e2t2e2t+e2t+e2t+22et2et2et2et+2dt2I=3e2te2t+222et+2dt=et=u3u2u2+2222u1duu=3u2u22u22du=3u412u322udu4I=3u41u32udu=3u(u32u)+32u21u32udu=3u+32u21u(u22)duletdecomposeF(u)=32u21u(u22)F(u)=32u21u(uα)(u+α)withα=42F(u)=au+buα+cu+αa=1α2=1α2=12b=32α21α(2α)=32α212α2andc=32α21(α)(2α)=32α212α2andF(u)du=alnu+blnuα+clnu+αc=at+blnetα+clnet+α+cbutt=argsh(x2)=ln(x2+1+x22)F(u)du=aln(x2+1+x22)+blnx2+1+x22α+clnx2+1+x22+α+csothevalueofIisknown.

Answered by MJS last updated on 06/Nov/19

2 substitutions in 1 step  x=(√2)sinh s ∧ s=ln t  ⇒  x=((t^2 −1)/(t(√2))) ⇔ t=((x+(√(x^2 +2)))/(√2)) → dx=((√(2(x^2 +2)))/(x+(√(x^2 +2))))dt=((t^2 +1)/(t^2 (√2)))dt  ∫((x+(√(x^2 +2)))/(x+1−(√(x^2 +2))))dx=∫((t^2 +1)/(t−(√2)))dt=  =∫tdt+(√2)∫dt+3∫(dt/(t−(√2)))=  =(1/2)t^2 +t(√2)+3ln (t−(√2))=  =(((x+2)(x+(√(x^2 +2))))/2)+3ln (x−2+(√(x^2 +2))) +C

2substitutionsin1stepx=2sinhss=lntx=t21t2t=x+x2+22dx=2(x2+2)x+x2+2dt=t2+1t22dtx+x2+2x+1x2+2dx=t2+1t2dt==tdt+2dt+3dtt2==12t2+t2+3ln(t2)==(x+2)(x+x2+2)2+3ln(x2+x2+2)+C

Commented by mathmax by abdo last updated on 07/Nov/19

thank you sir mjs.

thankyousirmjs.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com