All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 73144 by mathmax by abdo last updated on 06/Nov/19
calculte∫x+2+x2x+1−2+x2dx
Commented by mathmax by abdo last updated on 07/Nov/19
I=∫x+2+x2x+1−2+x2dxchangementx=2sh(t)giveI=∫2sh(t)+2ch(t)2sh(t)+1−2cht2chtdt=∫(2sh(t)ch(t)+ch2t)2sh(t)−2ch(t)+1dt=∫sh(2t)+1+ch(2t)22sh(t)−2ch(t)+1dt=∫2sh(2t)+ch(2t)+12(2sh(t)−2ch(t)+1)dt=12∫2e2t−e−2t2+e2t+e−2t2+12et−e−t2−2et+e−t2+1dt=12∫2e2t−2e−2t+e2t+e−2t+22et−2e−t−2et−2e−t+2dt⇒2I=∫3e2t−e−2t+2−22e−t+2dt=et=u∫3u2−u−2+22−22u−1duu=∫3u2−u−22u−22du=∫3u4−12u3−22udu⇒4I=∫3u4−1u3−2udu=∫3u(u3−2u)+32u2−1u3−2udu=3u+∫32u2−1u(u2−2)duletdecomposeF(u)=32u2−1u(u2−2)⇒F(u)=32u2−1u(u−α)(u+α)withα=42F(u)=au+bu−α+cu+αa=−1−α2=1α2=12b=32α2−1α(2α)=32α2−12α2andc=32α2−1(−α)(−2α)=32α2−12α2and∫F(u)du=aln∣u∣+bln∣u−α∣+cln∣u+α∣c=at+bln∣et−α∣+cln∣et+α∣+cbutt=argsh(x2)=ln(x2+1+x22)⇒∫F(u)du=aln(x2+1+x22)+bln∣x2+1+x22−α∣+cln∣x2+1+x22+α∣+csothevalueofIisknown.
Answered by MJS last updated on 06/Nov/19
2substitutionsin1stepx=2sinhs∧s=lnt⇒x=t2−1t2⇔t=x+x2+22→dx=2(x2+2)x+x2+2dt=t2+1t22dt∫x+x2+2x+1−x2+2dx=∫t2+1t−2dt==∫tdt+2∫dt+3∫dtt−2==12t2+t2+3ln(t−2)==(x+2)(x+x2+2)2+3ln(x−2+x2+2)+C
thankyousirmjs.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com