Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73178 by mathmax by abdo last updated on 07/Nov/19

calculate ∫_0 ^∞  ((ln(2+x^2 ))/(x^2 −x+1))dx

calculate0ln(2+x2)x2x+1dx

Answered by mind is power last updated on 07/Nov/19

=∫_∞ ^0 ((ln(2+(1/x^2 )))/((1/x^2 )−(1/x)+1)).−(dx/x^2 )=∫_0 ^(+∞) ((ln(2x^2 +1)−ln(x^2 ))/(1−x+x^2 ))dx  =∫_0 ^(+∞) ((ln(2x^2 +1))/(1−x+x^2 ))dx−2∫_0 ^(+∞) ((ln(x))/(1−x+x^2 ))  ∫_0 ^(+∞) ((ln(x))/(1−x+x^2 ))dx=−∫_0 ^(+∞) ((ln(x))/(1−x+x^2 ))dx⇒=0  =∫_0 ^(+∞) ((ln(2x^2 +1))/(1−x+x^2 ))dx let f(t)=∫_0 ^(+∞) ((ln(tx^2 +1))/(1−x+x^2 ))dx  t≥0  f(0)=0  f′(t)=∫_0 ^∞ ((x^2 dx)/((tx^2 +1)(1−x+x^2 )))   f′(t)=∫_0 ^(+∞) ((ax+b)/(tx^2 +1))+((cx+d)/(1−x+x^2 ))  b+d=0  (a/t)+c=0⇒a+tc=0  a−b+c=0  dt−a+b=1  b=−d  a=−tc  −tc+d+c=0  dt+tc−d=1  d=c(t−1)  c(t−1)^2 +tc=1  c=(1/(t^2 −t+1)),d=((t−1)/(t^2 −t+1)),a=((−t)/(t^2 −t+1)),b=((1−t)/(t^2 −t+1))  f′(t)=(1/(t^2 −t+1))∫_0 ^(+∞) ((−tx+(1−t))/(tx^2 +1))dx+(1/(t^2 −t+1))∫_0 ^(+∞) ((x+t−1)/(x^2 −x+1))  =(1/(t^2 −t+1))∫_0 ^(+∞) ((−tx)/(tx^2 +1))+((1−t)/(t^2 −t+1))∫_0 ^(+∞) (dx/(tx^2 +1))+(1/(t^2 −t+1))∫_0 ^(+∞) ((x−(1/2))/(x^2 −x+1))dx  +((t−(1/2))/(t^2 −t+1))∫_0 ^(+∞) (dx/(x^2 −x+1))  =lim_(y→∞) ((1/2)/(t^2 −t+1))ln(((x^2 −x+1)/(tx^2 +1)))_0 ^y =−((ln(t))/(2(t^2 −t+1)))  ∫_0 ^(+∞) (dx/(tx^2 +1))=(1/(√t)).(π/2)  ∫_0 ^(+∞) (dx/(x^2 −x+1))=∫_0 ^(+∞) (dx/((x−(1/2))^2 +(3/4)))=(2/(√3)).{(π/2)+(π/6)}=((4π)/(3(√3)))  ⇒f′(t)=((ln(t))/(2(t^2 −t+1)))+((1−t)/(t^2 −t+1)).(π/2)(√t)+((t−(1/2))/(t^2 −t+1)).((4π)/(3(√3)))  ⇒our integral is f(2),f(0)=0  ∫_0 ^(+∞) ((ln(2x^2 +1))/(x^2 −x+1))dx=f(2)=∫_0 ^2 f′(t)dt  =∫_0 ^2 ((ln(t)dt)/(2(t^2 −t+1)))+(π/2)∫_0 ^2 (((1−t)(√t))/(t^2 −t+1))dt+((4π)/(3(√3)))∫_0 ^2 ((2t−1)/(2(t^2 −t+1)))dt  only ∫_0 ^2 ((ln(t))/(t^2 −t+1))dt is tricky  t^2 −t+1=(t−((1−i(√3))/2))(t−((1+i(√3))/2))  (1/(t^2 −t+1))=((−i(√3))/(t−((1−i(√3))/2)))+((i(√3))/(t−((1+i(√3))/2)))  ∫_0 ^2 ((ln(t))/(t^2 −t+1))dt=−i(√3)∫_0 ^2 ((ln(t))/(t−((1−i(√3))/2)))dt+i(√3)∫_0 ^2 (dt/(t−((1+i(√3))/2)))=c  j=((1−i(√3))/2),f=((1+i(√3))/2)  c=i(√3)∫_0 ^2 ((ln(t))/(1−ft))dt−i(√3)∫_0 ^2 ((ln(t))/(1−jt))dt  u=ft in firt ,jt=s in 2nd  c=i(√3)j∫_0 ^(2f) ((ln(u)+ln(j))/(1−u))du−i(√3)f∫_0 ^(2j) ((ln(s)+ln(f))/(1−s))ds  ∫_1 ^(1−z) ((ln(t))/(1−t))dt=Li_2 (z)  ⇒∫_0 ^(2f) ((ln(u)+ln(j))/(1−u))du=Li_2 (1−2f)−Li_2 (1)−log(j)log(1−2f)  ∫_0 ^(2j) ((ln(s)+ln(f))/(1−s))=Li_2 (1−2j)−Li_2 (1)−log(f)log(1−2j)  ⇒∫_0 ^2 ((ln(t))/(t^2 −t+1))dt=i(√3)(((1−i(√3))/2)){Li_2 (−i(√3))−Li_2 (1)+((iπ)/3)Log(−i(√3)}  −i(√3)(((1+i(√3))/2)){Li_2 (i(√3))−Li_2 (1)−((iπ)/3)log(i(√3))}

=0ln(2+1x2)1x21x+1.dxx2=0+ln(2x2+1)ln(x2)1x+x2dx=0+ln(2x2+1)1x+x2dx20+ln(x)1x+x20+ln(x)1x+x2dx=0+ln(x)1x+x2dx⇒=0=0+ln(2x2+1)1x+x2dxletf(t)=0+ln(tx2+1)1x+x2dxt0f(0)=0f(t)=0x2dx(tx2+1)(1x+x2)f(t)=0+ax+btx2+1+cx+d1x+x2b+d=0at+c=0a+tc=0ab+c=0dta+b=1b=da=tctc+d+c=0dt+tcd=1d=c(t1)c(t1)2+tc=1c=1t2t+1,d=t1t2t+1,a=tt2t+1,b=1tt2t+1f(t)=1t2t+10+tx+(1t)tx2+1dx+1t2t+10+x+t1x2x+1=1t2t+10+txtx2+1+1tt2t+10+dxtx2+1+1t2t+10+x12x2x+1dx+t12t2t+10+dxx2x+1=limy12t2t+1ln(x2x+1tx2+1)0y=ln(t)2(t2t+1)0+dxtx2+1=1t.π20+dxx2x+1=0+dx(x12)2+34=23.{π2+π6}=4π33f(t)=ln(t)2(t2t+1)+1tt2t+1.π2t+t12t2t+1.4π33ourintegralisf(2),f(0)=00+ln(2x2+1)x2x+1dx=f(2)=02f(t)dt=02ln(t)dt2(t2t+1)+π202(1t)tt2t+1dt+4π33022t12(t2t+1)dtonly02ln(t)t2t+1dtistrickyt2t+1=(t1i32)(t1+i32)1t2t+1=i3t1i32+i3t1+i3202ln(t)t2t+1dt=i302ln(t)t1i32dt+i302dtt1+i32=cj=1i32,f=1+i32c=i302ln(t)1ftdti302ln(t)1jtdtu=ftinfirt,jt=sin2ndc=i3j02fln(u)+ln(j)1udui3f02jln(s)+ln(f)1sds11zln(t)1tdt=Li2(z)02fln(u)+ln(j)1udu=Li2(12f)Li2(1)log(j)log(12f)02jln(s)+ln(f)1s=Li2(12j)Li2(1)log(f)log(12j)02ln(t)t2t+1dt=i3(1i32){Li2(i3)Li2(1)+iπ3Log(i3}i3(1+i32){Li2(i3)Li2(1)iπ3log(i3)}

Commented by mathmax by abdo last updated on 07/Nov/19

thankx sir.

thankxsir.

Commented by mind is power last updated on 07/Nov/19

y′re welcom sir

yrewelcomsir

Commented by aliesam last updated on 15/Dec/19

I didn′t get the first step where you factor −(dx/x^2 )  i mean the ln part

Ididntgetthefirststepwhereyoufactordxx2imeanthelnpart

Commented by aliesam last updated on 15/Dec/19

I mean    ∫_0 ^∞   ((ln(2+x^2 ))/(x^2 −x+1))=∫_∞ ^0 ((ln(2+(1/x^2 )))/((1/x^2 )−(1/x)+1)) . ((−dx)/x^2 )  ??

Imean0ln(2+x2)x2x+1=0ln(2+1x2)1x21x+1.dxx2??

Terms of Service

Privacy Policy

Contact: info@tinkutara.com