Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73179 by mathmax by abdo last updated on 07/Nov/19

caoculate ∫_0 ^∞   ((arctan(x^2 −1))/(2x^2  +1))dx

caoculate0arctan(x21)2x2+1dx

Commented by mathmax by abdo last updated on 07/Nov/19

residus method but need more proof let A =∫_0 ^∞  ((arctan(x^2 −1))/(2x^2  +1))dx  ⇒2A =∫_(−∞) ^(+∞)   ((arctan(x^2 −1))/(2x^2  +1))dx let W(z)=((arctan(z^2 −1))/(2z^2  +1)) ⇒  W(z)=((arctan(z^2 −1))/(2(z^2  +(1/2)))) =((arctan(z^2 −1))/(2(z−(i/(√2)))(z+(i/((√2) ))))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,(i/(√2))) and   Res(W,(i/(√2)))=lim_(z→(i/(√2)))  (z−(i/(√2)))W(z) =((arctan(((i/(√2)))^2 −1))/(2(((2i)/(√2)))))  =(√2)((arctan(−(1/2)−1))/(4i)) =−((√2)/(4i)) arctan((3/2)) ⇒  ∫_(−∞) ^(+∞)   W(z)dz =2iπ×(−((√2)/(4i)))arctan((3/2))=−((π(√2))/2) arctan((3/2))=2A  ⇒ A =−((π(√2))/4) arctan((3/2)) and if the graph of the function  x→((arctan(x^2 −1))/(2x^2  +1)) is on(x^′ ox) we take the absolute value...

residusmethodbutneedmoreproofletA=0arctan(x21)2x2+1dx2A=+arctan(x21)2x2+1dxletW(z)=arctan(z21)2z2+1W(z)=arctan(z21)2(z2+12)=arctan(z21)2(zi2)(z+i2)+W(z)dz=2iπRes(W,i2)andRes(W,i2)=limzi2(zi2)W(z)=arctan((i2)21)2(2i2)=2arctan(121)4i=24iarctan(32)+W(z)dz=2iπ×(24i)arctan(32)=π22arctan(32)=2AA=π24arctan(32)andifthegraphofthefunctionxarctan(x21)2x2+1ison(xox)wetaketheabsolutevalue...

Answered by mind is power last updated on 07/Nov/19

∫_0 ^(+∞) ((arctan(x^2 −1))/(2x^2 +1))dx=a  ∫(dx/(2x^2 +1))=(1/(√2))arctan(x(√2))  a=[((arctan(x(√2)))/(√2)).arctan(x^2 −1)]_0 ^(+∞) −(1/(√2))∫_0 ^(+∞) ((arctan(x(√2)).2xdx)/((x^2 −1)^2 +1))  a=(π^2 /(4(√2)))−(√2)∫_0 ^(+∞) ((arctan(x(√2))xdx)/((x^2 −1)^2 +1))=(π^2 /(4(√2)))−(1/(√2))∫_(−∞) ^(+∞) ((arctan(x(√2))xdx)/((x^2 −1)^2 +1))  on pose f(t)=∫_(−∞) ^(+∞) ((xarctan(tx))/((x^2 −1)^2 +1))dx  t≥0  f′(t)=∫_(−∞) ^(+∞) ((x^2 dx)/((1+x^2 t^2 )(x^2 −1−i)(x^2 −1+i)))  pols are x_0 =+(i/t),x^2 =1+i⇒x_2 =(2^(1/4) )e^((iπ)/8)   x=−1+i⇒x_1 =(2^(1/4) )e^((i3π)/8)   f′(t)=2iπ res(f,x_0 ,x_1 x_2 )  2iπres(f,(i/t))=2iπ.(((−1)/t^2 )/((2i)t((((1+t^2 )/t^2 ))^2 +1)))=((−πt)/((2t^4 +2t^2 +1)))  too be continued

0+arctan(x21)2x2+1dx=adx2x2+1=12arctan(x2)a=[arctan(x2)2.arctan(x21)]0+120+arctan(x2).2xdx(x21)2+1a=π24220+arctan(x2)xdx(x21)2+1=π24212+arctan(x2)xdx(x21)2+1onposef(t)=+xarctan(tx)(x21)2+1dxt0f(t)=+x2dx(1+x2t2)(x21i)(x21+i)polsarex0=+it,x2=1+ix2=(214)eiπ8x=1+ix1=(214)ei3π8f(t)=2iπres(f,x0,x1x2)2iπres(f,it)=2iπ.1t2(2i)t((1+t2t2)2+1)=πt(2t4+2t2+1)toobecontinued

Terms of Service

Privacy Policy

Contact: info@tinkutara.com