All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 73179 by mathmax by abdo last updated on 07/Nov/19
caoculate∫0∞arctan(x2−1)2x2+1dx
Commented by mathmax by abdo last updated on 07/Nov/19
residusmethodbutneedmoreproofletA=∫0∞arctan(x2−1)2x2+1dx⇒2A=∫−∞+∞arctan(x2−1)2x2+1dxletW(z)=arctan(z2−1)2z2+1⇒W(z)=arctan(z2−1)2(z2+12)=arctan(z2−1)2(z−i2)(z+i2)⇒∫−∞+∞W(z)dz=2iπRes(W,i2)andRes(W,i2)=limz→i2(z−i2)W(z)=arctan((i2)2−1)2(2i2)=2arctan(−12−1)4i=−24iarctan(32)⇒∫−∞+∞W(z)dz=2iπ×(−24i)arctan(32)=−π22arctan(32)=2A⇒A=−π24arctan(32)andifthegraphofthefunctionx→arctan(x2−1)2x2+1ison(x′ox)wetaketheabsolutevalue...
Answered by mind is power last updated on 07/Nov/19
∫0+∞arctan(x2−1)2x2+1dx=a∫dx2x2+1=12arctan(x2)a=[arctan(x2)2.arctan(x2−1)]0+∞−12∫0+∞arctan(x2).2xdx(x2−1)2+1a=π242−2∫0+∞arctan(x2)xdx(x2−1)2+1=π242−12∫−∞+∞arctan(x2)xdx(x2−1)2+1onposef(t)=∫−∞+∞xarctan(tx)(x2−1)2+1dxt⩾0f′(t)=∫−∞+∞x2dx(1+x2t2)(x2−1−i)(x2−1+i)polsarex0=+it,x2=1+i⇒x2=(214)eiπ8x=−1+i⇒x1=(214)ei3π8f′(t)=2iπres(f,x0,x1x2)2iπres(f,it)=2iπ.−1t2(2i)t((1+t2t2)2+1)=−πt(2t4+2t2+1)toobecontinued
Terms of Service
Privacy Policy
Contact: info@tinkutara.com