Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73181 by mathmax by abdo last updated on 07/Nov/19

calculate ∫_1 ^(3 )  ((x−2)/(√(x^2 +x+1)))dx

calculate13x2x2+x+1dx

Commented by mathmax by abdo last updated on 07/Nov/19

we have x^2  +x+1 =(x+(1/2))^2  +(3/4)  changement x+(1/2)=((√3)/2)sh(t)give  sh(t)=((2x+1)/(√3)) ⇒  ∫_1 ^3  ((x−2)/(√(x^2 +x+1)))dx =∫_(arsh((√3))) ^(argsh((7/(√3))))  ((((√3)/2)sh(t)−(1/2)−2)/(((√3)/2)ch(t)))×((√3)/2)ch(t)dt  =∫_(ln((√3)+(√4))) ^(ln((7/(√3))+(√(1+((49)/3) )))) (((√3)/2)sh(t)−(5/2))dt  =((√3)/2) ∫_(ln((√3)+2)) ^(ln((7/((√3) ))+(√(1+((49)/3))))) sh(t)dt−(5/2)(ln((7/(√3))+((√(52))/(√3)))−ln(2+(√3)))  =((√3)/4)[ e^t  +e^(−t) ]_(ln(2+(√3))) ^(ln(((7+(√(52)))/(√3)))) −(5/2){ln(((7+(√(52)))/(√3)))−ln(2+(√3))}  =((√3)/4){(((7+(√(52)))/(√3)))+(((7+(√(52)))/(√3)))^(−1) −(2+(√3))−(2+(√3))^(−1) }  −(5/2){ln(((7+(√(52)))/(√3)))−ln(2+(√3))}

wehavex2+x+1=(x+12)2+34changementx+12=32sh(t)givesh(t)=2x+1313x2x2+x+1dx=arsh(3)argsh(73)32sh(t)12232ch(t)×32ch(t)dt=ln(3+4)ln(73+1+493)(32sh(t)52)dt=32ln(3+2)ln(73+1+493)sh(t)dt52(ln(73+523)ln(2+3))=34[et+et]ln(2+3)ln(7+523)52{ln(7+523)ln(2+3)}=34{(7+523)+(7+523)1(2+3)(2+3)1}52{ln(7+523)ln(2+3)}

Answered by petrochengula last updated on 07/Nov/19

considerI= ∫((x−2)/(√(x^2 +x+1)))dx  =(1/2)∫((2(x−2))/(√(x^2 +x+1)))dx=(1/2)∫((2x+1)/(√(x^2 +x+1)))dx−(1/2)∫(5/(√(x^2 +x+1)))dx  =(√(x^2 +x+1))−(5/2)∫(1/(√(x^2 +x+(1/4)+(3/4))))dx  =(√(x^2 +x+1))−(5/2)∫(1/(√((x+(1/2))^2 +(3/4))))  consider ∫(1/(√((x+(1/2))^2 +(3/4))))dx  =∫(1/(√((3/4)((4/3)(((2x+1)/2))^2 +1))))dx  =(2/(√3))∫(1/(√((((2x+1)/(√3)))^2 +1)))dx  let sinhθ=((2x+1)/(√3))⇒(√3)sinhθ=2x+1⇒(√3)coshθdθ=2(dx/dθ)⇒dx=((√3)/2)coshθdθ=dx  =∫dθ  =θ+C  =sinh^(−1) (((2x+1)/(√3)))+c  ∫((x−2)/(√(x^2 +x+1)))dx=(√(x^2 +x+1))−(5/2)sinh^(−1) (((2x+1)/(√3)))+C  ∫_1 ^3 ((x−2)/(√(x^2 +x+1)))dx=(√(13))−(5/2)sinh^(−1) ((7/(√3)))−(√3)+(5/2)sinh^(−1) ((3/(√3)))

considerI=x2x2+x+1dx=122(x2)x2+x+1dx=122x+1x2+x+1dx125x2+x+1dx=x2+x+1521x2+x+14+34dx=x2+x+1521(x+12)2+34consider1(x+12)2+34dx=134(43(2x+12)2+1)dx=231(2x+13)2+1dxletsinhθ=2x+133sinhθ=2x+13coshθdθ=2dxdθdx=32coshθdθ=dx=dθ=θ+C=sinh1(2x+13)+cx2x2+x+1dx=x2+x+152sinh1(2x+13)+C13x2x2+x+1dx=1352sinh1(73)3+52sinh1(33)

Commented by petrochengula last updated on 07/Nov/19

please check if it is correct

pleasecheckifitiscorrect

Terms of Service

Privacy Policy

Contact: info@tinkutara.com