Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 73210 by TawaTawa last updated on 08/Nov/19

Commented by mr W last updated on 09/Nov/19

(2) is not defined. no unique solution.

(2)isnotdefined.nouniquesolution.

Commented by TawaTawa last updated on 09/Nov/19

God bless you sir

Godblessyousir

Answered by mind is power last updated on 08/Nov/19

let A=center of m_1   let B=center of m_2   AB=0.8m  CM of(m_1 ,m_2 )=D  such that m_1 .AD=m_2 DB⇒DB=((15)/(25))AD  AD+DB=0.8⇒AD=0.5m  2) let G=center of Rod wich is midpoint since the road is uniform  R.road  =h=0CM of (m_1 ,R,m_2 )=CM(CM(m_1 ,m_2 ),R(15))  CM(m1,m2)=D(M=40)  DR=0.5−0.4=0.1  ⇒Dh.40=15.hR⇒hR=((40)/(15))=(8/3)Dh  Dh+hR=DR=0.1⇒Dh=((0.3)/(11))  ⇒Ah=((0.3)/(11))+0.5=((5.8)/(11))=0.527..m  2)  let A point (0,h)  let B(0,t)⇒∣t−h∣=l  C(h,0)  h^2 +t^2 =l^2   his representation in coordinat plan of our problem  C,2m,Aand B mass=m  find G suche   mGA^→ +mGB^→ +2mGC^→ =0  ′vector′  ⇒(4m)GA^→ =−mAB^→ −2mAC^→   ⇒GA^→ =((−AB^→ )/4)−2((AC^→ )/4)  AB^→ =(0.t−h)=(0,l)  AC^→ =(h,−h)  GA^→ =(−(h/2),−l+(h/2))  ⇒AG^→ =((h/2),l−(h/2))  G(x,y)⇒ { ((x=(h/2))),((y−h=l−(h/2)⇒y=l+(h/2))) :}  we can go forther  in case CB=l  ⇒(h^2 +t^2 )=l^2 =∣h−t∣^2 =h^2 +t^2 −2ht⇒ht=0  CA=l⇒2h^2 =l^2 ⇒h=+_− (l/(√2)) we have 4 case if we want

letA=centerofm1letB=centerofm2AB=0.8mCMof(m1,m2)=Dsuchthatm1.AD=m2DBDB=1525ADAD+DB=0.8AD=0.5m2)letG=centerofRodwichismidpointsincetheroadisuniformR.road=h=0CMof(m1,R,m2)=CM(CM(m1,m2),R(15))CM(m1,m2)=D(M=40)DR=0.50.4=0.1Dh.40=15.hRhR=4015=83DhDh+hR=DR=0.1Dh=0.311Ah=0.311+0.5=5.811=0.527..m2)letApoint(0,h)letB(0,t)⇒∣th∣=lC(h,0)h2+t2=l2hisrepresentationincoordinatplanofourproblemC,2m,AandBmass=mfindGsuchemGA+mGB+2mGC=0vector(4m)GA=mAB2mACGA=AB42AC4AB=(0.th)=(0,l)AC=(h,h)GA=(h2,l+h2)AG=(h2,lh2)G(x,y){x=h2yh=lh2y=l+h2wecangofortherincaseCB=l(h2+t2)=l2=∣ht2=h2+t22htht=0CA=l2h2=l2h=+l2wehave4caseifwewant

Commented by TawaTawa last updated on 08/Nov/19

God bless you sir,  Thanks for your time

Godblessyousir,Thanksforyourtime

Terms of Service

Privacy Policy

Contact: info@tinkutara.com