Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 73227 by mathmax by abdo last updated on 08/Nov/19

find the polynom T_n  wich verify T_n (cosθ)=cos(nθ)  ∀n integr ∀θ real  1) find T_0 ,T_1 and T_2 and prove that   T_(n+2) =2x T_(n+1) −T_n   3) find deg(T_n ) and T_n (1) ,T_n (−1)  4) find T^′ (cosθ) for 0<θ<π  and prove that  (1−x^2 )T_n ′′−xT′_n  +n^2  T_n =0  5) find roots of T_n  and decompose T_n inside R[x]  6) find the value of Π_(k=0) ^(n−1) cos((((2k+1)π)/(2n)))

findthepolynomTnwichverifyTn(cosθ)=cos(nθ)nintegrθreal1)findT0,T1andT2andprovethatTn+2=2xTn+1Tn3)finddeg(Tn)andTn(1),Tn(1)4)findT(cosθ)for0<θ<πandprovethat(1x2)TnxTn+n2Tn=05)findrootsofTnanddecomposeTninsideR[x]6)findthevalueofk=0n1cos((2k+1)π2n)

Answered by mind is power last updated on 08/Nov/19

T_0 (cos(θ))=cos(0)=1⇒T_0 =1  T_1 (cos(θ))=cos(θ)⇒T_1 =xsin(  T_2 (cos(θ))=cos(2θ)=2cos^2 (θ)−1⇒T_2 =2x^2 −1  T_(n+2) {cos(θ)}=cos(n+2)θ=cos(θ)cos(n+1)θ−sin(θ)sin(n+1)θ  =2cos(θ)cos(n+1)θ −{cos(θ)cos(n+1)θ+sin(θ)sin(n+1)θ}  =2cos(θ)cos(n+1)θ−cos(nθ)  ⇒2cos(θ)T_(n+1) (cosθ)−T_n (cos(θ))=T_(n+1) (cos(θ))  ⇒T_(n+1) =2xT_(n+1) −T_n   deg(T_n )=n   by recursion deg(T_0 )=deg(1)=0 true  suppose for all n≥2 deg(T_n )=n  T_(n+1) =2xT_n −T_(n−1) ⇒deg(T_(n+1) )= deg(T_n )+1=n+1  T_n (1)=T_n (cos(0))=cos(0)=1  T_n (−1)=T_n (cos(π))=cos(nπ)=(−1)^n   T_n ′(cos(θ))=  T_n (cos(θ))=cos(nθ)⇒−sin(θ)Γ′(cos(θ))=−nsin(nθ)  ⇒Γ′(cos(θ))=((nsin(nθ))/(sin(θ)))  ⇒sin(θ)Γ_n ′(cos(θ))=nsin(nθ)  ⇒cos(θ)Γ′_n (cos(θ))−sin^2 T_n ′′(cos(θ))=n^2 cos(nθ)  ⇒cos(θ)Γ_n ′(cos(θ))−(1−cos^2 (θ))T′′(cos(θ))=n^2 T_n (cos(θ))  ⇔(1−cos^2 (θ))T′′_n −cos(θ)T′(cos(θ))+n^2 T_n (cos(θ))=0  ⇒(1−x^2 )Γ′′−xT^′ +n^2 T=0  since T_n is a polonomial of degres n he hase n roots over C  lets finde roots in [−1,1]⇒∃θ∈[0,2π]  x=cos(θ)  ⇒T_n (cos(θ))=cos(nθ)=0  ⇒nθ=(π/2)+kπ⇒θ=(π/(2n))+((kπ)/n),k∈[0,n−1]  ∀k,j∈[0,n−1[   k≠j⇒cos((((2k+1)π)/(2n)))≠cos((((2j+1)π)/(2n)))⇒  we get n different root  witch are X_k =cos((((2k+1)π)/(2n))),k∈[0,....n−1]  T_n =aΠ_(k=1) ^n (x−cos((((2k+1)π)/(2n)))  a coeficient of x^n   T_1 =x⇒a_1 =1  T_2 =2x^2 −1⇒a_2 =2,T_(n+1) =2xT_n −T_(n−1)   ⇒a_(n+1) =2a_n ⇒a_n =a_1 .2^(n−1) =2^(n−1)  ,n≥1  T_n = { ((1 if n=0)),((2^(n−1) Π_(k=0) ^(n−1) (x−cos((((2k+1)π)/(2n)))))) :} ifn≥1  if we put x=0  ⇒T_n (0)=1=2^(n−1) Π_(k=0) ^(n−1) (−cos(((2k+1)/(2n))π))=(−1)^n 2^(n−1) Π_(k=0) ^(n−1) (cos(((2k+1)/n)π)=T_n (0)  T_n (0)=cos(((nπ)/2))=    ⇒Π_(k=0) ^(n−1) (cos(((2k+1)/(2n))π)=(((−1)^n cos(((nπ)/2)))/2^(n−1) )

T0(cos(θ))=cos(0)=1T0=1T1(cos(θ))=cos(θ)T1=xsin(T2(cos(θ))=cos(2θ)=2cos2(θ)1T2=2x21Tn+2{cos(θ)}=cos(n+2)θ=cos(θ)cos(n+1)θsin(θ)sin(n+1)θ=2cos(θ)cos(n+1)θ{cos(θ)cos(n+1)θ+sin(θ)sin(n+1)θ}=2cos(θ)cos(n+1)θcos(nθ)2cos(θ)Tn+1(cosθ)Tn(cos(θ))=Tn+1(cos(θ))Tn+1=2xTn+1Tndeg(Tn)=nbyrecursiondeg(T0)=deg(1)=0truesupposeforalln2deg(Tn)=nTn+1=2xTnTn1deg(Tn+1)=deg(Tn)+1=n+1Tn(1)=Tn(cos(0))=cos(0)=1Tn(1)=Tn(cos(π))=cos(nπ)=(1)nTn(cos(θ))=Tn(cos(θ))=cos(nθ)sin(θ)Γ(cos(θ))=nsin(nθ)Γ(cos(θ))=nsin(nθ)sin(θ)sin(θ)Γn(cos(θ))=nsin(nθ)cos(θ)Γn(cos(θ))sin2Tn(cos(θ))=n2cos(nθ)cos(θ)Γn(cos(θ))(1cos2(θ))T(cos(θ))=n2Tn(cos(θ))(1cos2(θ))Tncos(θ)T(cos(θ))+n2Tn(cos(θ))=0(1x2)ΓxT+n2T=0sinceTnisapolonomialofdegresnhehasenrootsoverCletsfinderootsin[1,1]θ[0,2π]x=cos(θ)Tn(cos(θ))=cos(nθ)=0nθ=π2+kπθ=π2n+kπn,k[0,n1]k,j[0,n1[kjcos((2k+1)π2n)cos((2j+1)π2n)wegetndifferentrootwitchareXk=cos((2k+1)π2n),k[0,....n1]Tn=ank=1(xcos((2k+1)π2n)acoeficientofxnT1=xa1=1T2=2x21a2=2,Tn+1=2xTnTn1an+1=2anan=a1.2n1=2n1,n1Tn={1ifn=02n1n1k=0(xcos((2k+1)π2n))ifn1ifweputx=0Tn(0)=1=2n1k=0n1(cos(2k+12nπ))=(1)n2n1n1k=0(cos(2k+1nπ)=Tn(0)Tn(0)=cos(nπ2)=n1k=0(cos(2k+12nπ)=(1)ncos(nπ2)2n1

Commented by mathmax by abdo last updated on 08/Nov/19

thank you sir.

thankyousir.

Commented by mind is power last updated on 10/Nov/19

y′re welcom

yrewelcom

Commented by ajfour last updated on 10/Nov/19

i can barely follow these, but  great solution, you r a great solver  Sir.

icanbarelyfollowthese,butgreatsolution,youragreatsolverSir.

Commented by mind is power last updated on 10/Nov/19

thanx  sir i try to explain most of my worck

thanxsiritrytoexplainmostofmyworck

Terms of Service

Privacy Policy

Contact: info@tinkutara.com