Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73231 by mathmax by abdo last updated on 08/Nov/19

find the sum of  Σ_(n=0) ^∞ (n^2 −3n+1)e^(−n)

findthesumofn=0(n23n+1)en

Commented by mathmax by abdo last updated on 09/Nov/19

we have Σ_(n=0) ^∞ (n^2 −3n+1)e^(−n)  =Σ_(n=0) ^∞ n^2 (e^(−1) )^n −3Σ_(n=0) ^∞  n(e^(−1) )^n   +Σ_(n=0) ^∞  e^(−n)    first Σ_(n=0) ^∞  e^(−n) =Σ_(n=0) ^∞ (e^(−1) )^n  =(1/(1−e^(−1) )) =(e/(e−1))  let calculate f(x)=Σ_(n=0) ^∞  nx^n   and g(x)=Σ_(n=0) ^∞ n^2 x^n  with ∣x∣<1  we have Σ_(n=0) ^∞  x^n  =(1/(1−x)) ⇒Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  n x^n  =(x/((1−x)^2 )) ⇒Σ_(n=0) ^∞  ne^(−n)  =(e^(−1) /((1−e^(−1) )^2 )) =(e^2 /((e−1)^2 )) also  Σ_(n=1) ^∞  n^2  x^(n−1)  =(((1−x)^2 −x(−2)(1−x))/((1−x)^4 )) =((1−x+2x)/((1−x)^3 )) =((x+1)/((1−x)^3 )) ⇒  Σ_(n=0) ^∞  n^2  x^n  =((x^2  +x)/((1−x)^3 )) ⇒Σ_(n=0) ^∞  n^2 e^(−n)  =((e^(−2)  +e^(−1) )/((1−e^(−1) )^3 ))  =((e+e^2 )/((e−1)^3 )) ⇒Σ_(n=0) ^∞ (n^2 −3n +1)e^(−n)  =((e+e^2 )/((e−1)^3 ))−((3e^2 )/((e−1)^2 )) +(e/(e−1))  =((e+e^2 −3e^2 (e−1)+e(e−1)^2 )/((e−1)^3 )) =((e+e^2 −3e^3 +3e^2 +e(e^2 −2e +1))/((e−1)^3 ))  =((−3e^3  +4e^2  +e+e^3 −2e^2  +e)/((e−1)^3 )) =((−2e^3 +2e^2 +2e)/((e−1)^3 ))

wehaven=0(n23n+1)en=n=0n2(e1)n3n=0n(e1)n+n=0enfirstn=0en=n=0(e1)n=11e1=ee1letcalculatef(x)=n=0nxnandg(x)=n=0n2xnwithx∣<1wehaven=0xn=11xn=1nxn1=1(1x)2n=1nxn=x(1x)2n=0nen=e1(1e1)2=e2(e1)2alson=1n2xn1=(1x)2x(2)(1x)(1x)4=1x+2x(1x)3=x+1(1x)3n=0n2xn=x2+x(1x)3n=0n2en=e2+e1(1e1)3=e+e2(e1)3n=0(n23n+1)en=e+e2(e1)33e2(e1)2+ee1=e+e23e2(e1)+e(e1)2(e1)3=e+e23e3+3e2+e(e22e+1)(e1)3=3e3+4e2+e+e32e2+e(e1)3=2e3+2e2+2e(e1)3

Answered by mind is power last updated on 08/Nov/19

n^2 −3n+1=(n+1)(n+2)−6(n+1)+5  Σ_(n≥0) (n+1)(n+2)e^(−n) −6Σ_(n≥0) (n+1)e^(−n) +5Σ_(n≥0) e^(−n)   (1/(1−x))=Σx^k ⇒(1/((1−x)^2 )).Σ_(k≥1) kx^(k−1) =Σ_(k≥0) (k+1)x^k   x=e^(−1) ⇒Σe^(−n) =(1/(1−e^(−1) ))=(e/(e−1))  ⇒x=e^(−1) ⇒(1/((1−e^(−1) )^2 ))=Σ_(n≥0) (n+1)e^(−n) =(e^2 /((e−1)))  (1/((1−x)^2 ))=Σ_(k≥0) (k+1)x^k ⇒Σ_(k≥1) k(k+1)x^(k−1) =(2/((1−x)^3 ))=Σ_(k≥0) (k+1)(k+2)x^k   x=e^(−1) ⇒Σ_(n≥0) (n+1)(n+2)e^(−n) =(2/((1−e^(−1) )^3 ))=((2e^3 )/((e−1)^3 ))  so we get ((2e^3 )/((e−1)^3 ))−((6e^2 )/((e−1)^2 ))+((5e)/((e−1)))  =((e^3 −4e^2 +5e)/((e−1)^3 ))

n23n+1=(n+1)(n+2)6(n+1)+5n0(n+1)(n+2)en6n0(n+1)en+5n0en11x=Σxk1(1x)2.k1kxk1=k0(k+1)xkx=e1Σen=11e1=ee1x=e11(1e1)2=n0(n+1)en=e2(e1)1(1x)2=k0(k+1)xkk1k(k+1)xk1=2(1x)3=k0(k+1)(k+2)xkx=e1n0(n+1)(n+2)en=2(1e1)3=2e3(e1)3soweget2e3(e1)36e2(e1)2+5e(e1)=e34e2+5e(e1)3

Commented by mathmax by abdo last updated on 08/Nov/19

thankx sir.

thankxsir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com