Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73238 by mathmax by abdo last updated on 08/Nov/19

let 0<a<1 calculate ∫_0 ^∞  ((ln(t)t^(a−1) )/(1+t))dt  and ∫_0 ^∞  ((ln^2 (t)t^(a−1) )/(1+t))dt

$${let}\:\mathrm{0}<{a}<\mathrm{1}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} \left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt} \\ $$

Commented bymathmax by abdo last updated on 10/Nov/19

we have ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa)))=f(a) if 0<a<1   (this result is proved in  the plstform) ⇒ f^′ (a) =∫_0 ^∞  (∂/∂a)((t^(a−1) /(1+t)))dt =∫_0 ^∞  (∂/∂a)((e^((a−1)lnt) /(1+t)))dt  =∫_0 ^∞ ((lnt ×t^(a−1) )/(1+t))  but  f^′ (a)=π×((−π cos(πa))/(sin^2 (πa))) =−π^2  ((cos(πa))/(sin^2 (πa)))  also f^((2)) (a) =∫_0 ^∞  ((ln^2 (t)t^(a−1) )/(1+t))dt  and f^((2)) (a)=  −π^2 ((−πsin(πa)sin^2 (πa)−2sin(πa)π cos(πa))/(sin^4 (πa)))  =π^3 ×((sin^2 (πa)+2cos(πa))/(sin^3 (πa))) ⇒∫_0 ^∞   ((ln(t)t^(a−1) )/(1+t))dt=−((π^2 cos(πa))/(sin^2 (πa)))  and ∫_0 ^∞  ((ln^2 t t^(a−1) )/(1+t))dt =π^3 ×((sin^2 (πa)+2cos(πa))/(sin^3 (πa))) .

$${we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)}={f}\left({a}\right)\:{if}\:\mathrm{0}<{a}<\mathrm{1}\:\:\:\left({this}\:{result}\:{is}\:{proved}\:{in}\right. \\ $$ $$\left.{the}\:{plstform}\right)\:\Rightarrow\:{f}^{'} \left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\partial}{\partial{a}}\left(\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}\right){dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\partial}{\partial{a}}\left(\frac{{e}^{\left({a}−\mathrm{1}\right){lnt}} }{\mathrm{1}+{t}}\right){dt} \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \frac{{lnt}\:×{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}\:\:{but}\:\:{f}^{'} \left({a}\right)=\pi×\frac{−\pi\:{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)}\:=−\pi^{\mathrm{2}} \:\frac{{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)} \\ $$ $${also}\:{f}^{\left(\mathrm{2}\right)} \left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} \left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{and}\:{f}^{\left(\mathrm{2}\right)} \left({a}\right)= \\ $$ $$−\pi^{\mathrm{2}} \frac{−\pi{sin}\left(\pi{a}\right){sin}^{\mathrm{2}} \left(\pi{a}\right)−\mathrm{2}{sin}\left(\pi{a}\right)\pi\:{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{4}} \left(\pi{a}\right)} \\ $$ $$=\pi^{\mathrm{3}} ×\frac{{sin}^{\mathrm{2}} \left(\pi{a}\right)+\mathrm{2}{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{3}} \left(\pi{a}\right)}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}=−\frac{\pi^{\mathrm{2}} {cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)} \\ $$ $${and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} {t}\:{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\pi^{\mathrm{3}} ×\frac{{sin}^{\mathrm{2}} \left(\pi{a}\right)+\mathrm{2}{cos}\left(\pi{a}\right)}{{sin}^{\mathrm{3}} \left(\pi{a}\right)}\:. \\ $$ $$ \\ $$

Answered by mind is power last updated on 09/Nov/19

Commented bymathmax by abdo last updated on 10/Nov/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Commented bymind is power last updated on 10/Nov/19

y′re welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com