Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 73261 by mathmax by abdo last updated on 09/Nov/19

calculate Σ_(n=1) ^∞ (n^4 +2n^2 −3)(x^n /(n!)) in case of convergence.

calculaten=1(n4+2n23)xnn!incaseofconvergence.

Commented by mathmax by abdo last updated on 09/Nov/19

we have  Σ_(n=1) ^∞ (n^4  +2n^2 −3)(x^n /(n!)) =Σ_(n=1) ^∞ (n^3 /((n−1)!))x^n  +2Σ_(n=1) ^∞ ((nx^n )/((n−1)!))  −3 Σ_(n=1) ^∞  (x^n /(n!))  we have first  Σ_(n=1) ^∞  (x^n /(n!)) =e^x −1  Σ_(n=1) ^∞  ((nx^n )/((n−1)!)) =Σ_(n=0) ^∞ (((n+1)x^(n+1) )/(n!)) =Σ_(n=1) ^∞  (x^(n+1) /((n−1)!)) +Σ_(n=0) ^∞  (x^(n+1) /(n!))  =x Σ_(n=0) ^∞  (x^(n+1) /(n!)) +x e^x  =x^2  e^x  +xe^x   Σ_(n=1) ^∞  (n^3 /((n−1)!))x^n  =Σ_(n=0) ^∞ (((n+1)^3 )/(n!))x^(n+1)   =Σ_(n=0) ^∞  ((n^3 +3n^2  +n +1)/(n!)) x^(n+1)  =Σ_(n=1) ^∞  (n^2 /((n−1)!))x^(n+1)  +3Σ_(n=1) ^∞ (n/((n−1)!))x^(n+1)   +Σ_(n=0) ^∞  (x^(n+1) /((n−1)!)) +Σ_(n=0) ^∞  (x^(n+1) /(n!))  Σ_(n=1) ^∞  (n^2 /((n−1)!))x^(n+1)  =Σ_(n=0) ^∞  (((n+1)^2  x^(n+2) )/(n!))  =Σ_(n=0) ^∞  ((n^2  +2n+1)/(n!)) x^(n+2)  =Σ_(n=1) ^∞  (n/((n−1)!))x^(n+2) +2Σ_(n=1) ^∞ (1/((n−1)!))x^(n+2)   +x^2  e^x   =Σ_(n=0) ^∞  ((n+1)/(n!))x^(n+2)   +2Σ_(n=0) ^∞  (x^(n+3) /(n!)) +x^2  e^x   =Σ_(n=1) ^∞  (x^(n+2) /((n−1)!)) +x^2  e^x  +2x^3  e^x  +x^2 e^x   =Σ_(n=0) ^∞ (x^(n+3) /(n!)) +2x^(2 ) e^x  +2x^3  e^x   =x^3 e^x  +2x^3  e^x  +2x^2  e^x  =(3x^3  +2x^2 )e^x  ...be continued...

wehaven=1(n4+2n23)xnn!=n=1n3(n1)!xn+2n=1nxn(n1)!3n=1xnn!wehavefirstn=1xnn!=ex1n=1nxn(n1)!=n=0(n+1)xn+1n!=n=1xn+1(n1)!+n=0xn+1n!=xn=0xn+1n!+xex=x2ex+xexn=1n3(n1)!xn=n=0(n+1)3n!xn+1=n=0n3+3n2+n+1n!xn+1=n=1n2(n1)!xn+1+3n=1n(n1)!xn+1+n=0xn+1(n1)!+n=0xn+1n!n=1n2(n1)!xn+1=n=0(n+1)2xn+2n!=n=0n2+2n+1n!xn+2=n=1n(n1)!xn+2+2n=11(n1)!xn+2+x2ex=n=0n+1n!xn+2+2n=0xn+3n!+x2ex=n=1xn+2(n1)!+x2ex+2x3ex+x2ex=n=0xn+3n!+2x2ex+2x3ex=x3ex+2x3ex+2x2ex=(3x3+2x2)ex...becontinued...

Answered by mind is power last updated on 09/Nov/19

use 1,x,x(x−1),x(x−1)(x−2),x(x−1)(x−2)(x−3)  as Base of IR^4 [X]  n^4 +2n^2 −3=an(n−1)(n−2)(n−3)+bn(n−1)(n−2)+cn(n−1)+dn+t  Σ_(n≥1) (n^4 +2n^2 −3)(x^n /(n!))=Σ_(n≥4) (a(x^n /((n−4)!)))+bΣ_(n≥4) (x^n /((n−3))!))+cΣ_(n≥4) (x^n /((n−2)!))+dΣ_(n≥4) (x^n /((n−1)!))+tΣ_(n≥4) (x^n /(n!))  +{Σ_(n=1) ^3 (n^4 +2n^2 −3)(x^n /(n!))=h(x)}  =ax^4 e^x +bx^3 (e^x −1)+cx^2 (e^x −1−x)+dx(e^x −1−x−(x^2 /2))+t(e^x −1−x−(x^2 /2)−(x^3 /6))+h(x)

use1,x,x(x1),x(x1)(x2),x(x1)(x2)(x3)asBaseofIR4[X]n4+2n23=an(n1)(n2)(n3)+bn(n1)(n2)+cn(n1)+dn+tn1(n4+2n23)xnn!=n4(axn(n4)!)+bn4xn(n3))!+cn4xn(n2)!+dn4xn(n1)!+tn4xnn!+{3n=1(n4+2n23)xnn!=h(x)}=ax4ex+bx3(ex1)+cx2(ex1x)+dx(ex1xx22)+t(ex1xx22x36)+h(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com