Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73293 by ~blr237~ last updated on 10/Nov/19

Explicit  f(x)= ∫_1 ^∞  ((lnt)/((x^2 +t^2 )^2 )) dt

Explicitf(x)=1lnt(x2+t2)2dt

Commented by mathmax by abdo last updated on 10/Nov/19

let w(x)=∫_1 ^∞  ((lnt)/(x^2  +t^2 ))dt ⇒w(x)=_(t=(1/u))    −∫_0 ^1  ((−lnu)/(x^2  +(1/u^2 )))(−(du/u^2 ))  =−∫_0 ^1   ((lnu)/(u^2 x^2  +1))du =_(ux=z)    −∫_0 ^x  ((ln((z/x)))/(z^2  +1))(dz/x)  =−(1/x)∫_0 ^x  ((lnz−lnx)/(z^2  +1))dz =−(1/x)∫_0 ^x  ((lnz)/(z^2  +1))dz+((lnx)/x) arctanx  w(x)=((lnx)/x)arctanx −(1/x)∫_0 ^x  ((lnz)/(z^2  +1))dz  and   w^′ (x)= −∫_1 ^(+∞) ((2xlnt)/((x^2  +t^2 )^2 ))dt =−2xf(x) ⇒f(x)=−(1/(2x))w^′ (x) we have  w^′ (x)=((1−lnx)/x^2 ) arctanx +((lnx)/(x(1+x^2 ))) +(1/x^2 ) ∫_0 ^x  ((lnz)/(z^2  +1))dz −((lnx)/(x(x^2  +1))) ⇒  f(x)=−(1/(2x)){((1−lnx)/x^2 ) arctanx +(1/x^2 ) ∫_0 ^x  ((lnz)/(z^2  +1))dz}  =((lnx−1)/(2x^3 )) arctanx −(1/(2x^3 )) ∫_0 ^x   ((lnz)/(z^2  +1))dz

letw(x)=1lntx2+t2dtw(x)=t=1u01lnux2+1u2(duu2)=01lnuu2x2+1du=ux=z0xln(zx)z2+1dzx=1x0xlnzlnxz2+1dz=1x0xlnzz2+1dz+lnxxarctanxw(x)=lnxxarctanx1x0xlnzz2+1dzandw(x)=1+2xlnt(x2+t2)2dt=2xf(x)f(x)=12xw(x)wehavew(x)=1lnxx2arctanx+lnxx(1+x2)+1x20xlnzz2+1dzlnxx(x2+1)f(x)=12x{1lnxx2arctanx+1x20xlnzz2+1dz}=lnx12x3arctanx12x30xlnzz2+1dz

Commented by ~blr237~ last updated on 10/Nov/19

the first  one

thefirstone

Answered by mind is power last updated on 10/Nov/19

check it sir   f(x)=∫_1 ^(+∞) ((ln(t))/((x^2 +t^2 )^2 ))dt or ∫_0 ^(+∞) ((ln(t))/((x^2 +t^2 )^2 ))?

checkitsirf(x)=1+ln(t)(x2+t2)2dtor0+ln(t)(x2+t2)2?

Commented by ~blr237~ last updated on 10/Nov/19

the first one

thefirstone

Commented by ~blr237~ last updated on 10/Nov/19

the first one

thefirstone

Answered by mind is power last updated on 10/Nov/19

f(x)=∫_1 ^(+∞) ((ln(t))/((x^2 +t^2 )^2 ))dt  f(x)=(d/da)∫((−ln(t))/((a+t^2 )))dt∣_(a=x^2 )   a>0  let g(a)=−∫_1 ^(+∞) ((ln(t))/(a+t^2 ))dt  t=(1/u)⇒dt=−(du/u^2 )⇒g(a)=∫_0 ^1 ((ln(u))/(au^2 +1))du  =∫_0 ^1 ((ln(u))/((u(√a)−i)(u(√a)+i)))du  =∫_0 ^1 ((ln(u)du)/(2i(u(√a)−i)))−(1/(2i))∫_0 ^1 ((ln(u)du)/((u(√a)+i)))  =∫_0 ^1 ((ln(u)du)/(−2(−iu(√a)−1)))+(1/2)∫_0 ^1 ((ln(u)du)/((iu(√a)−1)))  −iu(√a)=x  in first   iu(√a)=y in 2nd  ⇒∫_0 ^(−i(√a)) ((ln((x/(√a))i))/(−2(x−1))).(dx/(−i(√a)))+(1/2)∫_0 ^(i(√a)) ((ln((y/(i(√a)))))/((y−1))).(dy/(i(√a)))  =−(1/(2i(√a))){∫_0 ^(−i(√a)) ((ln(x)+ln((√a))+((iπ)/2))/(1−x))dx+∫_0 ^(i(√a)) ((ln(y)−ln((√a))−((iπ)/2))/(1−y))dy}  use ∫_1 ^(1−z) ((ln(t))/(1−x))dt=Li_2 (z)  =−(1/(2i(√a))){∫_(1−1) ^(1−(1+i(√(a)))) ((ln(x))/(1−x))dx+∫_(1−1) ^(1−(1−i(√a))) ((ln(y))/(1−y))dy−(ln(√a)+i(π/2))log(1+i(√a))+(ln(√a)+((iπ)/2))log(1−i(√(a)}))  =−(1/(2i(√a)))Li_2 (1+i(√a))−((Li_2 (1−i(√a)))/(2i(√a)))+((ln((√a))+i(π/2))/(2i(√a)))log(((1+i(√a))/(1−i(√a))))+c  f(x)=(d/da){−(1/(2i(√a)))Li_2 (1+i(√a))−((Li_2 (1−i(√a)))/(2i(√a)))+((ln((√a))+i(π/2))/(2i(√a)))log(((1+i(√a))/(1−i(√a))))+c}_(a=x^2 )    withe (d/dz)Li_2 (z)=−((ln(1−z))/z)  you will get close forme littel big!  we can use ∀z∈C −{i}(1/(2i)).log(((1+iz)/(1−iz)))=arctan(z)  f(x)=(d/da){−((Li_2 (1+i(√a)))/(2i(√a)))−((Li_2 (1−i(√a)))/(2i(√a)))+((ln((√a))+((iπ)/2))/(√a)).arctan((√a))}∣_(a=x^2 )

f(x)=1+ln(t)(x2+t2)2dtf(x)=ddaln(t)(a+t2)dta=x2a>0letg(a)=1+ln(t)a+t2dtt=1udt=duu2g(a)=01ln(u)au2+1du=01ln(u)(uai)(ua+i)du=01ln(u)du2i(uai)12i01ln(u)du(ua+i)=01ln(u)du2(iua1)+1201ln(u)du(iua1)iua=xinfirstiua=yin2nd0ialn(xai)2(x1).dxia+120ialn(yia)(y1).dyia=12ia{0ialn(x)+ln(a)+iπ21xdx+0ialn(y)ln(a)iπ21ydy}use11zln(t)1xdt=Li2(z)=12ia{111(1+ia)ln(x)1xdx+111(1ia)ln(y)1ydy(lna+iπ2)log(1+ia)+(lna+iπ2)log(1ia)}=12iaLi2(1+ia)Li2(1ia)2ia+ln(a)+iπ22ialog(1+ia1ia)+cf(x)=dda{12iaLi2(1+ia)Li2(1ia)2ia+ln(a)+iπ22ialog(1+ia1ia)+c}a=x2witheddzLi2(z)=ln(1z)zyouwillgetcloseformelittelbig!wecanusezC{i}12i.log(1+iz1iz)=arctan(z)f(x)=dda{Li2(1+ia)2iaLi2(1ia)2ia+ln(a)+iπ2a.arctan(a)}a=x2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com