Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 7331 by rohit meena last updated on 23/Aug/16

Commented by sandy_suhendra last updated on 24/Aug/16

for the simetric root, like y_1 =2α and y_2 =2β, we can use the subtitute method  y=2x ⇒x=(1/2)y substitute to ax^2 + bx +c = 0  a((1/2)y)^2 + b((1/2)y) + c = 0  (1/4)ay^2  + (1/2)by + c = 0  or (1/4)ax^2  + (1/2)bx + c = 0            ax^2  + 2bx + 4c = 0

$${for}\:{the}\:{simetric}\:{root},\:{like}\:{y}_{\mathrm{1}} =\mathrm{2}\alpha\:{and}\:{y}_{\mathrm{2}} =\mathrm{2}\beta,\:{we}\:{can}\:{use}\:{the}\:{subtitute}\:{method} \\ $$$${y}=\mathrm{2}{x}\:\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}}{y}\:{substitute}\:{to}\:{ax}^{\mathrm{2}} +\:{bx}\:+{c}\:=\:\mathrm{0} \\ $$$${a}\left(\frac{\mathrm{1}}{\mathrm{2}}{y}\right)^{\mathrm{2}} +\:{b}\left(\frac{\mathrm{1}}{\mathrm{2}}{y}\right)\:+\:{c}\:=\:\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}{ay}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\mathrm{2}}{by}\:+\:{c}\:=\:\mathrm{0} \\ $$$${or}\:\frac{\mathrm{1}}{\mathrm{4}}{ax}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\mathrm{2}}{bx}\:+\:{c}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{ax}^{\mathrm{2}} \:+\:\mathrm{2}{bx}\:+\:\mathrm{4}{c}\:=\:\mathrm{0} \\ $$

Commented by Rasheed Soomro last updated on 24/Aug/16

New idea for me! There was a mistake  in my answer.I have corrected now.  By ′symetric roots′  you mean proportional  roots? such as kα and kβ ?

$${New}\:{idea}\:{for}\:{me}!\:{There}\:{was}\:{a}\:{mistake} \\ $$$${in}\:{my}\:{answer}.{I}\:{have}\:{corrected}\:{now}. \\ $$$${By}\:'{symetric}\:{roots}'\:\:{you}\:{mean}\:{proportional} \\ $$$${roots}?\:{such}\:{as}\:{k}\alpha\:{and}\:{k}\beta\:? \\ $$

Commented by sandy_suhendra last updated on 25/Aug/16

not just such as kα and kβ, but also like (kα+c) and (kβ+c) or α^2  and β^2

$${not}\:{just}\:{such}\:{as}\:{k}\alpha\:{and}\:{k}\beta,\:{but}\:{also}\:{like}\:\left({k}\alpha+{c}\right)\:{and}\:\left({k}\beta+{c}\right)\:{or}\:\alpha^{\mathrm{2}} \:{and}\:\beta^{\mathrm{2}} \\ $$

Commented by Rasheed Soomro last updated on 25/Aug/16

THankS!

$$\mathcal{TH}{ank}\mathcal{S}! \\ $$

Answered by Rasheed Soomro last updated on 24/Aug/16

If α and β are the roots of  ax^2 +bx+c=0,  then    α+β=−(b/a)    and    αβ=(c/a)  Formula for determining equation, whose  ′sum of the roots′  and  ′product of the roots′ are given.        x^2 −(sum of the roots)x+(product of the roots)=0    (i) 2α , 2β  Required equation has     sum of the roots =2α+2β=2(α+β)=2(−(b/a))=−((2b)/a)      product of the roots=2α.2β=4αβ=4((c/a))=((4c)/a)  Required equation will be      x^2 −(−((2b)/a))x+(((4c)/a))=0      ax^2 +2bx+4c=0    (ii) α^2 ,β^2   Sum of the roots of required equation               =α^2 +β^2 =(α+β)^2 −2αβ                                 =(−(b/a))^2 −2((c/a))=((b^2 −ac)/a)  Product of the roots of required equation                                 =α^2 .β^2 =(αβ)^2 =((c/a))^2 =(c^2 /a^2 )  Required equation :     x^2 −(((b^2 −ac)/a))x+((c^2 /a^2 ))=0     a^2 x^2 −a(b^2 −ac)x+c^2 =0    (iii) α+1,β+1  Sum of the roots of required equation        =(α+1)+(β+1)=(α+β)+2                                           =(−(b/a))+2=((2−b)/a)  Product of the roots of required equation            =(α+1).(β+1)=αβ+α+β+1                                            =((c/a))+(−(b/a))+1=((a−b+c)/a)  Required equation :          x^2 −(((2−b)/a))x+(((a−b+c)/a))=0        ax^2 +(b−2)x+(a−b+c)=0    (iv) ((1+α)/(1−α)) , ((1+β)/(1−β))  Sum of the roots=((1+α)/(1−α)) + ((1+β)/(1−β))=(((1+α)(1−β)+(1+β)(1−α))/((1−α)(1−β)))              =(((1−β+α−αβ)+(1−α+β−αβ))/(1−β−α+αβ))              =((1+(α−β)−αβ+1−(α−β)−αβ)/(1−(α+β)+αβ))=((2−2αβ)/(1−(α+β)+αβ))=((2−2((c/a)))/(1−(−(b/a))+(c/a)))  =(((2a−2c)/a)/((a+b+c)/a))=((2(a−c))/(a+b+c))  Product of the roots=((1+α)/(1−α))× ((1+β)/(1−β))=((1+(α+β)+αβ)/(1−(α+β)+αβ))=((1+(−(b/a))+((c/a)))/(1−(−(b/a))+((c/a))))                         =((a−b+c)/(a+b+c))  Required equation: x^2 −(((2(a−c))/(a+b+c)))x+((a−b+c)/(a+b+c))=0                    (a+b+c)x^2 −2(a−c)x+(a−b+c)=0  (v) (α/β) ,(β/α)  (v)  Sum of the roots=(α/β)+(β/α)=((α^2 +β^2 )/(αβ))=(((α+β)^2 −2αβ)/(αβ))            =(((−(b/a))^2 −2((c/a)))/(c/a))=((b^2 −2ac)/a^2 )×(a/c)=((b^2 −2ac)/(ac))  Product of the roots=(α/β)×(β/α)=1  required equation                      x^2 −(((b^2 −2ac)/(ac)))x+1=0                  acx^2 −(b^2 −2ac)x+ac=0

$${If}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{roots}\:{of}\:\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}, \\ $$$${then}\:\:\:\:\alpha+\beta=−\frac{{b}}{{a}}\:\:\:\:{and}\:\:\:\:\alpha\beta=\frac{{c}}{{a}} \\ $$$${Formula}\:{for}\:{determining}\:{equation},\:{whose} \\ $$$$'{sum}\:{of}\:{the}\:{roots}'\:\:{and}\:\:'{product}\:{of}\:{the}\:{roots}'\:{are}\:{given}. \\ $$$$\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{2}} −\left(\boldsymbol{{sum}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{roots}}\right)\boldsymbol{{x}}+\left(\boldsymbol{{product}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{roots}}\right)=\mathrm{0} \\ $$$$ \\ $$$$\left({i}\right)\:\mathrm{2}\alpha\:,\:\mathrm{2}\beta \\ $$$${Required}\:{equation}\:{has} \\ $$$$\:\:\:{sum}\:{of}\:{the}\:{roots}\:=\mathrm{2}\alpha+\mathrm{2}\beta=\mathrm{2}\left(\alpha+\beta\right)=\mathrm{2}\left(−\frac{{b}}{{a}}\right)=−\frac{\mathrm{2}{b}}{{a}} \\ $$$$\:\:\:\:{product}\:{of}\:{the}\:{roots}=\mathrm{2}\alpha.\mathrm{2}\beta=\mathrm{4}\alpha\beta=\mathrm{4}\left(\frac{{c}}{{a}}\right)=\frac{\mathrm{4}{c}}{{a}} \\ $$$${Required}\:{equation}\:{will}\:{be} \\ $$$$\:\:\:\:{x}^{\mathrm{2}} −\left(−\frac{\mathrm{2}{b}}{{a}}\right){x}+\left(\frac{\mathrm{4}{c}}{{a}}\right)=\mathrm{0} \\ $$$$\:\:\:\:{ax}^{\mathrm{2}} +\mathrm{2}{bx}+\mathrm{4}{c}=\mathrm{0} \\ $$$$ \\ $$$$\left({ii}\right)\:\alpha^{\mathrm{2}} ,\beta^{\mathrm{2}} \\ $$$${Sum}\:{of}\:{the}\:{roots}\:{of}\:{required}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(−\frac{{b}}{{a}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{{c}}{{a}}\right)=\frac{{b}^{\mathrm{2}} −{ac}}{{a}} \\ $$$${Product}\:{of}\:{the}\:{roots}\:{of}\:{required}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\alpha^{\mathrm{2}} .\beta^{\mathrm{2}} =\left(\alpha\beta\right)^{\mathrm{2}} =\left(\frac{{c}}{{a}}\right)^{\mathrm{2}} =\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} } \\ $$$${Required}\:{equation}\:: \\ $$$$\:\:\:{x}^{\mathrm{2}} −\left(\frac{{b}^{\mathrm{2}} −{ac}}{{a}}\right){x}+\left(\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$\:\:\:{a}^{\mathrm{2}} {x}^{\mathrm{2}} −{a}\left({b}^{\mathrm{2}} −{ac}\right){x}+{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$$$\left({iii}\right)\:\alpha+\mathrm{1},\beta+\mathrm{1} \\ $$$${Sum}\:{of}\:{the}\:{roots}\:{of}\:{required}\:{equation} \\ $$$$\:\:\:\:\:\:=\left(\alpha+\mathrm{1}\right)+\left(\beta+\mathrm{1}\right)=\left(\alpha+\beta\right)+\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(−\frac{{b}}{{a}}\right)+\mathrm{2}=\frac{\mathrm{2}−{b}}{{a}} \\ $$$${Product}\:{of}\:{the}\:{roots}\:{of}\:{required}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\alpha+\mathrm{1}\right).\left(\beta+\mathrm{1}\right)=\alpha\beta+\alpha+\beta+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\frac{{c}}{{a}}\right)+\left(−\frac{{b}}{{a}}\right)+\mathrm{1}=\frac{{a}−{b}+{c}}{{a}} \\ $$$${Required}\:{equation}\:: \\ $$$$\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} −\left(\frac{\mathrm{2}−{b}}{{a}}\right){x}+\left(\frac{{a}−{b}+{c}}{{a}}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:{ax}^{\mathrm{2}} +\left({b}−\mathrm{2}\right){x}+\left({a}−{b}+{c}\right)=\mathrm{0} \\ $$$$ \\ $$$$\left({iv}\right)\:\frac{\mathrm{1}+\alpha}{\mathrm{1}−\alpha}\:,\:\frac{\mathrm{1}+\beta}{\mathrm{1}−\beta} \\ $$$${Sum}\:{of}\:{the}\:{roots}=\frac{\mathrm{1}+\alpha}{\mathrm{1}−\alpha}\:+\:\frac{\mathrm{1}+\beta}{\mathrm{1}−\beta}=\frac{\left(\mathrm{1}+\alpha\right)\left(\mathrm{1}−\beta\right)+\left(\mathrm{1}+\beta\right)\left(\mathrm{1}−\alpha\right)}{\left(\mathrm{1}−\alpha\right)\left(\mathrm{1}−\beta\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left(\mathrm{1}−\beta+\alpha−\alpha\beta\right)+\left(\mathrm{1}−\alpha+\beta−\alpha\beta\right)}{\mathrm{1}−\beta−\alpha+\alpha\beta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}+\left(\alpha−\beta\right)−\alpha\beta+\mathrm{1}−\left(\alpha−\beta\right)−\alpha\beta}{\mathrm{1}−\left(\alpha+\beta\right)+\alpha\beta}=\frac{\mathrm{2}−\mathrm{2}\alpha\beta}{\mathrm{1}−\left(\alpha+\beta\right)+\alpha\beta}=\frac{\mathrm{2}−\mathrm{2}\left(\frac{{c}}{{a}}\right)}{\mathrm{1}−\left(−\frac{{b}}{{a}}\right)+\frac{{c}}{{a}}} \\ $$$$=\frac{\frac{\mathrm{2}{a}−\mathrm{2}{c}}{{a}}}{\frac{{a}+{b}+{c}}{{a}}}=\frac{\mathrm{2}\left({a}−{c}\right)}{{a}+{b}+{c}} \\ $$$${Product}\:{of}\:{the}\:{roots}=\frac{\mathrm{1}+\alpha}{\mathrm{1}−\alpha}×\:\frac{\mathrm{1}+\beta}{\mathrm{1}−\beta}=\frac{\mathrm{1}+\left(\alpha+\beta\right)+\alpha\beta}{\mathrm{1}−\left(\alpha+\beta\right)+\alpha\beta}=\frac{\mathrm{1}+\left(−\frac{{b}}{{a}}\right)+\left(\frac{{c}}{{a}}\right)}{\mathrm{1}−\left(−\frac{{b}}{{a}}\right)+\left(\frac{{c}}{{a}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{a}−{b}+{c}}{{a}+{b}+{c}} \\ $$$${Required}\:{equation}:\:{x}^{\mathrm{2}} −\left(\frac{\mathrm{2}\left({a}−{c}\right)}{{a}+{b}+{c}}\right){x}+\frac{{a}−{b}+{c}}{{a}+{b}+{c}}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}+{b}+{c}\right){x}^{\mathrm{2}} −\mathrm{2}\left({a}−{c}\right){x}+\left({a}−{b}+{c}\right)=\mathrm{0} \\ $$$$\left({v}\right)\:\frac{\alpha}{\beta}\:,\frac{\beta}{\alpha} \\ $$$$\left({v}\right)\:\:{Sum}\:{of}\:{the}\:{roots}=\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }{\alpha\beta}=\frac{\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta}{\alpha\beta} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\left(−\frac{{b}}{{a}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{{c}}{{a}}\right)}{\frac{{c}}{{a}}}=\frac{{b}^{\mathrm{2}} −\mathrm{2}{ac}}{{a}^{\mathrm{2}} }×\frac{{a}}{{c}}=\frac{{b}^{\mathrm{2}} −\mathrm{2}{ac}}{{ac}} \\ $$$${Product}\:{of}\:{the}\:{roots}=\frac{\alpha}{\beta}×\frac{\beta}{\alpha}=\mathrm{1} \\ $$$${required}\:{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} −\left(\frac{{b}^{\mathrm{2}} −\mathrm{2}{ac}}{{ac}}\right){x}+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{acx}^{\mathrm{2}} −\left({b}^{\mathrm{2}} −\mathrm{2}{ac}\right){x}+{ac}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com