All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 73327 by mathmax by abdo last updated on 10/Nov/19
letw(x)=∫0∞lnt(x2+t2)2dt1)explicitw(x)2)calculateUn=∫0∞lnt(n2+t2)2dtfindlimn→+∞n4UnanddeterminenatureoftbeserieΣUn
Commented by mathmax by abdo last updated on 11/Nov/19
1)wehavew(x)=∫0∞ln(t)(x2+t2)2dtletf(x)=∫0∞ln(t)x2+t2dtwehavef′(x)=−∫0∞2xln(t)(x2+t2)dt=−2xw(x)⇒w(x)=−12xf′(x)wehavef(x)=t=xu∫0∞ln(xu)x2(1+u2)xdu(wesupposex>0becausefiseven)⇒f(x)=1x∫0∞ln(x)+ln(u)1+u2du=lnxx∫0∞du1+u2+1x∫0∞lnu1+u2du(∫0∞lnu1+u2du=0)=πlnx2x⇒f′(x)=π2{1−lnxx2}=π(1−lnx)2x2⇒w(x)=−12x×π(1−lnx)2x2=π(lnx−1)4x32)Un=∫0∞lnt(n2+t2)2dt⇒Un=π(ln(n)−1)4n3⇒limn→+∞n4Un=limn→+∞nπ(ln(n)−1)4=+∞Un=π4ln(n)n3−π41n3Σln(n)n3conv.andΣ1n3⇒ΣUnconverges.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com