Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73331 by mathmax by abdo last updated on 10/Nov/19

calculate ∫_0 ^∞    ((ln(1+e^(−3x^2 ) ))/(3+x^2 ))dx

calculate0ln(1+e3x2)3+x2dx

Commented by mathmax by abdo last updated on 11/Nov/19

let A =∫_0 ^∞   ((ln(1+e^(−3x^2 ) ))/(x^2  +3))dx ⇒2A =∫_(−∞) ^(+∞)  ((ln(1+e^(−3x^2 ) ))/(x^2  +3))dx  let W(z)=((ln(1+e^(−3z^2 ) ))/(z^2  +3)) ⇒W(z)=((ln(1+e^(−3z^2 ) ))/((z−i(√3))(z+i(√3))))  ∫_(−∞) ^(+∞)   W(z)dz =2iπ Res(W,i(√3))  Res(W,i(√3)) =lim_(z→i(√3))   (z−i(√3))W(z)=((ln(1+e^(−3(i(√3))^2 ) ))/(2i(√3)))  =((ln(1+e^9 ))/(2i(√3))) ⇒∫_(−∞) ^(+∞)  W(z)dz =2iπ×((ln(1+e^9 ))/(2i(√3))) =(π/(√3))ln(1+e^9 ) ⇒  A =(π/(2(√3)))ln(1+e^9 ).

letA=0ln(1+e3x2)x2+3dx2A=+ln(1+e3x2)x2+3dxletW(z)=ln(1+e3z2)z2+3W(z)=ln(1+e3z2)(zi3)(z+i3)+W(z)dz=2iπRes(W,i3)Res(W,i3)=limzi3(zi3)W(z)=ln(1+e3(i3)2)2i3=ln(1+e9)2i3+W(z)dz=2iπ×ln(1+e9)2i3=π3ln(1+e9)A=π23ln(1+e9).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com