Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73337 by mathmax by abdo last updated on 10/Nov/19

calculate ∫_0 ^∞  ((cos(artan(2x)))/((3+x^2 )^2 ))dx

calculate0cos(artan(2x))(3+x2)2dx

Commented by mathmax by abdo last updated on 11/Nov/19

let I =∫_0 ^∞   ((cos(arctan(2x)))/((x^2  +3)^2 ))dx ⇒I =_(x=(√3)t)    ∫_0 ^∞  ((cos(arctan(2(√3)t)))/(9(t^2 +1)^2 ))(√3)dt  ⇒2 I =((√3)/9)∫_(−∞) ^(+∞)  ((cos(arctan(2(√3)t))/((t^2  +1)^2 ))dt  =((√3)/9) Re(∫_(−∞) ^(+∞)  (e^(iarctan(2(√3)t)) /((t^2  +1)^2 ))dt)  let W(z)=(e^(iarctan(2(√3)z)) /((z^2  +1)^2 )) ⇒W(z)=(e^(iarctan(2(√3)z)) /((z−i)^2 (z+i)^2 )) and  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  Res(W,i) =lim_(z→i)    (1/((2−1)!)){(z−i)^2 W(z)}^((1))   =lim_(z→i)      {(e^(iarctan(2(√3)z)) /((z+i)^2 ))}^((1))   =lim_(z→i)     ((i((2(√3))/(1+12z^2 ))(z+i)^2 e^(iarctan(2(√3)z)) −2(z+i)e^(iarctan(2(√3)z)) )/((z+i)^4 ))  =lim_(z→i)         (({((2i(√3)(z+i))/(1+12z^2 ))−2}e^(iarctan(2(√3)z)) )/((z+i)^3 ))  =(((((−4(√3))/(−11))−2}e^(i arctan(2(√3)i)) )/(−8i)) =(((4(√3)+22)e^(i arctan(2(√3)i)) )/(88i)) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ×(((4(√3)+22)e^(i arctan(2(√3)i)) )/(88i))  =(π/(44)){ cos(arctan(2(√3)i)+isin(arctan(2(√3)i))} ⇒  I =((√3)/(18))×(π/(44)) cos(arctan(2(√3)i)

letI=0cos(arctan(2x))(x2+3)2dxI=x=3t0cos(arctan(23t))9(t2+1)23dt2I=39+cos(arctan(23t)(t2+1)2dt=39Re(+eiarctan(23t)(t2+1)2dt)letW(z)=eiarctan(23z)(z2+1)2W(z)=eiarctan(23z)(zi)2(z+i)2and+W(z)dz=2iπRes(W,i)Res(W,i)=limzi1(21)!{(zi)2W(z)}(1)=limzi{eiarctan(23z)(z+i)2}(1)=limzii231+12z2(z+i)2eiarctan(23z)2(z+i)eiarctan(23z)(z+i)4=limzi{2i3(z+i)1+12z22}eiarctan(23z)(z+i)3=(43112}eiarctan(23i)8i=(43+22)eiarctan(23i)88i+W(z)dz=2iπ×(43+22)eiarctan(23i)88i=π44{cos(arctan(23i)+isin(arctan(23i))}I=318×π44cos(arctan(23i)

Commented by mathmax by abdo last updated on 11/Nov/19

forgive  we have ∫_(−∞) ^(+∞) W(z)dz =(π/(44))(4(√3)+22) e^(iarctan(2(√3)i))  ⇒  I =((√3)/(18))×(π/(22))(2(√3)+11)cos(arctan(2(√3)i)

forgivewehave+W(z)dz=π44(43+22)eiarctan(23i)I=318×π22(23+11)cos(arctan(23i)

Commented by mathmax by abdo last updated on 11/Nov/19

we have arctan(z)=(1/(2i))ln(((1+iz)/(1−iz))) ⇒arctan(2(√3)i)  =(1/(2i))ln(((1−2(√3))/(1+2(√3)))) =(1/(2i))ln(−((2(√3)−1)/(2(√3)+1)))  =(1/(2i))ln(−1)+(1/(2i))ln(((2(√3)−1)/(2(√3)+1))) =(1/(2i))(iπ) +(1/(2i))ln(((2(√3)−1)/(2(√3)+1)))  =(π/2) +(1/(2i))ln(((2(√3)−1)/(2(√3)+1))) ⇒cos(arctan(2(√3)i))=−sin(−(i/2)ln(((2(√3)−1)/(2(√3)+1)))  =sin((i/2)ln(((2(√3)−1)/(2(√3)+1)))) =sh(−(1/2)ln(((2(√3)−1)/(2(√3)+1))))  =((e^(−(1/2)ln(((2(√3)−1)/(2(√3)+1)))) −e^((1/2)ln(((2(√3)−1)/(2(√3)+1)))) )/2) =−(1/2){(√((2(√3)−1)/(2(√3)+1)))−(1/(√((2(√3)−1)/(2(√3)+1))))} ⇒  I=((π(√3))/(18×22))(2(√3)+11){(((2(√3)−1)/(2(√3)+1)))^(−(1/2)) −(((2(√3)−1)/(2(√3)+1)))^(1/2) }

wehavearctan(z)=12iln(1+iz1iz)arctan(23i)=12iln(1231+23)=12iln(23123+1)=12iln(1)+12iln(23123+1)=12i(iπ)+12iln(23123+1)=π2+12iln(23123+1)cos(arctan(23i))=sin(i2ln(23123+1)=sin(i2ln(23123+1))=sh(12ln(23123+1))=e12ln(23123+1)e12ln(23123+1)2=12{23123+1123123+1}I=π318×22(23+11){(23123+1)12(23123+1)12}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com