All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 73338 by mathmax by abdo last updated on 10/Nov/19
calculate∫0∞arctan(2cosx)3+x2dx
Commented by mathmax by abdo last updated on 11/Nov/19
letI=∫0∞arctan(2cosx)x2+3dx⇒I=x=3t∫0∞arctan(2cos(3t))3(t2+1)3dt=13∫0∞arctan(2cos(3t))t2+1dt⇒23I=∫−∞+∞arctan(2cos(3t)t2+1dtletw(z)=arctan(2cos(3z))z2+1=arctan(2cos(3z))(z−i)(z+i)∫−∞+∞w(z)dz=2iπRes(w,i)Res(w,i)=arctan(2cos(i3))2i⇒∫−∞+∞w(z)dz=2iπ×arctan(2cos(i3))2i=πarctan(2cos(i3))butcos(i3)=ch(3)=e3+e−32⇒arctan(2cos(i3))=arctan(e3+e−3)⇒∫−∞+∞w()dz=πarctan(e3+e−3)⇒I=π23arctan(e3+e−3).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com