Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 73396 by mathmax by abdo last updated on 11/Nov/19

find ∫_0 ^1  e^(−t^2 ) ln(1−t)dt

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}^{\mathrm{2}} } {ln}\left(\mathrm{1}−{t}\right){dt} \\ $$

Commented by mathmax by abdo last updated on 14/Nov/19

let take a try  let I =∫_0 ^1  e^(−t^2 ) ln(1−t)dt  we have  ln^′ (1−t) =((−1)/(1−t)) =−Σ_(n=0) ^∞  t^n    for ∣t∣<1 ⇒  ln(1−t) =−Σ_(n=0) ^∞  (t^(n+1) /(n+1))   +c    (c=0)  =−Σ_(n=1) ^∞  (t^n /n) ⇒I =−∫_0 ^1  e^(−t^2 ) (Σ_(n=1) ^∞  (t^n /n))dt  =−Σ_(n=1) ^∞    (1/n)∫_0 ^1   t^n e^(−t^2  )   dt =−Σ_(n=1) ^∞   (W_n /n)  with  W_n =∫_0 ^1  t^n  e^(−t^2 )  dt   by parts u^′ =t^n  and v=e^(−t^2 )  ⇒  W_n =[(1/(n+1))t^(n+1)  e^(−t^2 ) ]_0 ^1  −∫_0 ^1  (1/(n+1))t^(n+1) (−2t)e^(−t^2 ) dt  =(e^(−1) /(n+1)) +(2/(n+1)) ∫_0 ^1   t^(n+2)  e^(−t^2 ) dt =(e^(−1) /(n+1)) +(2/(n+1)) W_(n+2)  ⇒  (n+1)W_n =e^(−1)  +2 W_(n+2)  ⇒W_(n+2) =(1/2){ (n+1)W_n −e^(−1) }  ....be continued....

$${let}\:{take}\:{a}\:{try}\:\:{let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}^{\mathrm{2}} } {ln}\left(\mathrm{1}−{t}\right){dt}\:\:{we}\:{have} \\ $$$${ln}^{'} \left(\mathrm{1}−{t}\right)\:=\frac{−\mathrm{1}}{\mathrm{1}−{t}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{t}^{{n}} \:\:\:{for}\:\mid{t}\mid<\mathrm{1}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{t}\right)\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{t}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:\:\:+{c}\:\:\:\:\left({c}=\mathrm{0}\right) \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{t}^{{n}} }{{n}}\:\Rightarrow{I}\:=−\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}^{\mathrm{2}} } \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{t}^{{n}} }{{n}}\right){dt} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{n}} {e}^{−{t}^{\mathrm{2}} \:} \:\:{dt}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{W}_{{n}} }{{n}}\:\:{with} \\ $$$${W}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}} \:{e}^{−{t}^{\mathrm{2}} } \:{dt}\:\:\:{by}\:{parts}\:{u}^{'} ={t}^{{n}} \:{and}\:{v}={e}^{−{t}^{\mathrm{2}} } \:\Rightarrow \\ $$$${W}_{{n}} =\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{t}^{{n}+\mathrm{1}} \:{e}^{−{t}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{n}+\mathrm{1}}{t}^{{n}+\mathrm{1}} \left(−\mathrm{2}{t}\right){e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$$=\frac{{e}^{−\mathrm{1}} }{{n}+\mathrm{1}}\:+\frac{\mathrm{2}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{n}+\mathrm{2}} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:=\frac{{e}^{−\mathrm{1}} }{{n}+\mathrm{1}}\:+\frac{\mathrm{2}}{{n}+\mathrm{1}}\:{W}_{{n}+\mathrm{2}} \:\Rightarrow \\ $$$$\left({n}+\mathrm{1}\right){W}_{{n}} ={e}^{−\mathrm{1}} \:+\mathrm{2}\:{W}_{{n}+\mathrm{2}} \:\Rightarrow{W}_{{n}+\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left({n}+\mathrm{1}\right){W}_{{n}} −{e}^{−\mathrm{1}} \right\} \\ $$$$....{be}\:{continued}.... \\ $$

Answered by mind is power last updated on 11/Nov/19

this a tricky one We use F_2 (a,b,c,z)  hypdrgeometric function

$${this}\:{a}\:{tricky}\:{one}\:{We}\:{use}\:{F}_{\mathrm{2}} \left({a},{b},{c},{z}\right)\:\:{hypdrgeometric}\:{function} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com