Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73397 by mathmax by abdo last updated on 11/Nov/19

find f(x)=∫_0 ^1  e^(−t) ln(1−xt^2 )dt  with ∣x∣<1  2)calculate ∫_0 ^1  e^(−t) ln(1−(t^2 /2))dt

$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left(\mathrm{1}−{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$ $$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right){dt} \\ $$

Commented byabdomathmax last updated on 12/Nov/19

1) we have ln^′ (1−u)=((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n    if ∣u∣<1 ⇒  ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c  (c=0) ⇒  ln(1−u) =−Σ_(n=1) ^∞  (u^n /n)     we have ∣xt^2 ∣<1 ⇒  ln(1−xt^2 ) =−Σ_(n=1) ^∞  ((x^n  t^(2n) )/n) ⇒  f(x)=−∫_0 ^1 e^(−t)  (Σ_(n=1) ^∞  ((x^n  t^(2n) )/n))dt  =−Σ_(n=1) ^∞  (x^n /n) ∫_0 ^1  t^(2n)  e^(−t)   dt =−Σ_(n=1) ^∞  A_n (x^n /n)  with  A_n =∫_0 ^1  t^(2n)  e^(−t)  dt   let determinate  I_n =∫_0 ^1  t^n  e^(−t)  dt  by parts  u=t^n  and v^′ =e^(−t)  ⇒  I_n =[−e^(−t)  t^n ]_0 ^1 +∫_0 ^1 nt^(n−1)  e^(−t)  dt  =−e^(−1)  +n I_(n−1) =nI_(n−1) −(1/e)  (n>0)  let W_n =(I_n /(n!)) ⇒W_(n+1) =(I_(n+1) /((n+1)!)) =(((n+1)I_n −(1/e))/((n+1)!))  =(I_n /(n!)) −(1/(e(n+1)!)) =W_n −(1/(e(n+1)!)) ⇒  W_(n+1) −W_n =−(1/(e(n+1)!)) ⇒  Σ_(k=0) ^(n−1) (W_(k+1) −W_k ) =−(1/e)Σ_(k=0) ^(n−1)   (1/((k+1)!))  ⇒W_n =W_0 −(1/e) Σ_(k=1) ^n  (1/(k!))  we have W_0 =I_0 =∫_0 ^1  e^(−t)  dt  =[−e^(−t) ]_0 ^1  =1−e^(−1)  ⇒W_n =1−e^(−1) −(1/e)Σ_(k=1) ^n  (1/(k!)) ⇒  I_n =n!W_n =n!{1−e^(−1) −e^(−1) Σ_(k=1) ^n  (1/(k!))} ⇒  A_n =(2n)!{1−e^(−1) −e^(−1) Σ_(k=1) ^(2n)  (1/(k!))} ⇒  f(x)=−Σ_(n=1) ^∞ (2n)!{1−e^(−1) −e^(−1) Σ_(k=1) ^(2n)  (1/(k!))}(x^n /n)  =(e^(−1) −1)Σ_(n=1) ^∞ (((2n)!)/n) x^n  +e^(−1) Σ_(n=1) ^∞ (((2n)!)/n)(Σ_(k=1) ^(2n)  (1/(k!)))x^n   .....be continued....

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{ln}^{'} \left(\mathrm{1}−{u}\right)=\frac{−\mathrm{1}}{\mathrm{1}−{u}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}^{{n}} \:\:\:{if}\:\mid{u}\mid<\mathrm{1}\:\Rightarrow \\ $$ $${ln}\left(\mathrm{1}−{u}\right)\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:+{c}\:\:\left({c}=\mathrm{0}\right)\:\Rightarrow \\ $$ $${ln}\left(\mathrm{1}−{u}\right)\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}^{{n}} }{{n}}\:\:\:\:\:{we}\:{have}\:\mid{xt}^{\mathrm{2}} \mid<\mathrm{1}\:\Rightarrow \\ $$ $${ln}\left(\mathrm{1}−{xt}^{\mathrm{2}} \right)\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} \:{t}^{\mathrm{2}{n}} }{{n}}\:\Rightarrow \\ $$ $${f}\left({x}\right)=−\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{t}} \:\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} \:{t}^{\mathrm{2}{n}} }{{n}}\right){dt} \\ $$ $$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{e}^{−{t}} \:\:{dt}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} \frac{{x}^{{n}} }{{n}}\:\:{with} \\ $$ $${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{e}^{−{t}} \:{dt}\:\:\:{let}\:{determinate}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}} \:{e}^{−{t}} \:{dt} \\ $$ $${by}\:{parts}\:\:{u}={t}^{{n}} \:{and}\:{v}^{'} ={e}^{−{t}} \:\Rightarrow \\ $$ $${I}_{{n}} =\left[−{e}^{−{t}} \:{t}^{{n}} \right]_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} {nt}^{{n}−\mathrm{1}} \:{e}^{−{t}} \:{dt} \\ $$ $$=−{e}^{−\mathrm{1}} \:+{n}\:{I}_{{n}−\mathrm{1}} ={nI}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{{e}}\:\:\left({n}>\mathrm{0}\right) \\ $$ $${let}\:{W}_{{n}} =\frac{{I}_{{n}} }{{n}!}\:\Rightarrow{W}_{{n}+\mathrm{1}} =\frac{{I}_{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)!}\:=\frac{\left({n}+\mathrm{1}\right){I}_{{n}} −\frac{\mathrm{1}}{{e}}}{\left({n}+\mathrm{1}\right)!} \\ $$ $$=\frac{{I}_{{n}} }{{n}!}\:−\frac{\mathrm{1}}{{e}\left({n}+\mathrm{1}\right)!}\:={W}_{{n}} −\frac{\mathrm{1}}{{e}\left({n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$ $${W}_{{n}+\mathrm{1}} −{W}_{{n}} =−\frac{\mathrm{1}}{{e}\left({n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$ $$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({W}_{{k}+\mathrm{1}} −{W}_{{k}} \right)\:=−\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)!} \\ $$ $$\Rightarrow{W}_{{n}} ={W}_{\mathrm{0}} −\frac{\mathrm{1}}{{e}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\:{we}\:{have}\:{W}_{\mathrm{0}} ={I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} \:{dt} \\ $$ $$=\left[−{e}^{−{t}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\mathrm{1}−{e}^{−\mathrm{1}} \:\Rightarrow{W}_{{n}} =\mathrm{1}−{e}^{−\mathrm{1}} −\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\Rightarrow \\ $$ $${I}_{{n}} ={n}!{W}_{{n}} ={n}!\left\{\mathrm{1}−{e}^{−\mathrm{1}} −{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\right\}\:\Rightarrow \\ $$ $${A}_{{n}} =\left(\mathrm{2}{n}\right)!\left\{\mathrm{1}−{e}^{−\mathrm{1}} −{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}!}\right\}\:\Rightarrow \\ $$ $${f}\left({x}\right)=−\sum_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{2}{n}\right)!\left\{\mathrm{1}−{e}^{−\mathrm{1}} −{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}!}\right\}\frac{{x}^{{n}} }{{n}} \\ $$ $$=\left({e}^{−\mathrm{1}} −\mathrm{1}\right)\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(\mathrm{2}{n}\right)!}{{n}}\:{x}^{{n}} \:+{e}^{−\mathrm{1}} \sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(\mathrm{2}{n}\right)!}{{n}}\left(\sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}!}\right){x}^{{n}} \\ $$ $$.....{be}\:{continued}.... \\ $$ $$ \\ $$

Answered by mind is power last updated on 11/Nov/19

f(x)=[−e^(−t) ln(1−xt^2 )]_0 ^1 +∫_0 ^1 ((e^(−t) .−2xt)/(1−xt^2 ))dt  =−e^(−1) ln(1−x)−2x∫_0 ^1 .((te^(−t) dt)/((1−(√x)t)(1+(√x)t)))  =−e^(−1) ln(1−x)−(√x)∫_0 ^1 ((e^(−t) .(1+t(√x)−(1−t(√x))))/((1−t(√x))(1+t(√x))))dt  =−e^(−1) ln(1−x)−(√x)∫_0 ^1 ((e^(−t) dt)/(1−t(√x)))+(√x)∫_0 ^1 ((e^(−t) dt)/(1+t(√x)))  let u=1−t(√x) in first and s=1+t(√x) in 2nd  =−e^(−1) ln(1−x)+∫_1 ^(1−(√x)) (e^((u−1)/(√x)) /u)du+∫_1 ^(1+(√x)) (e^((1−s)/(√x)) /s)ds  m=(u/(√x)) in first m=(s/(√x))  in]2nd  =−e^(−1) ln(1−x)+∫^((1/(√x))−1) _(1/(√x)) ((e^m .e^(−(1/(√x))) )/m).dm+∫_(1/(√x)) ^(1+(1/(√x))) e^(1/(√x)) .e^(−m) .(dm/m)346  We use  Ei(w)=∫_(−∞) ^w (e^x /x)dx=∫_∞ ^(−w) (e^(−x) /x)dx  Ei  is exponential integral function   we get −e^(−1) ln(1−x)+{Ei((1/(√x))−1)−Ei((1/(√x)))}e^((−1)/(√x)) +e^(1/(√x)) {Ei(−1−(1/(√x)))−Ei(−(1/(√x)))}  ∫_0 ^1 e^(−t) ln(1−(t^2 /2))dt put x=(1/2)  =e^(−1) ln(2)+{Ei((1/(√2))−1)−Ei((1/(√2)))}e^(−(1/(√2))) +e^(1/(√2)) {Ei(−1−(1/(√2)))−Ei((1/(√2)))}

$${f}\left({x}\right)=\left[−{e}^{−{t}} {ln}\left(\mathrm{1}−{xt}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{t}} .−\mathrm{2}{xt}}{\mathrm{1}−{xt}^{\mathrm{2}} }{dt} \\ $$ $$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)−\mathrm{2}{x}\int_{\mathrm{0}} ^{\mathrm{1}} .\frac{{te}^{−{t}} {dt}}{\left(\mathrm{1}−\sqrt{{x}}{t}\right)\left(\mathrm{1}+\sqrt{{x}}{t}\right)} \\ $$ $$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)−\sqrt{{x}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{t}} .\left(\mathrm{1}+{t}\sqrt{{x}}−\left(\mathrm{1}−{t}\sqrt{{x}}\right)\right)}{\left(\mathrm{1}−{t}\sqrt{{x}}\right)\left(\mathrm{1}+{t}\sqrt{{x}}\right)}{dt} \\ $$ $$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)−\sqrt{{x}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{t}} {dt}}{\mathrm{1}−{t}\sqrt{{x}}}+\sqrt{{x}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{t}} {dt}}{\mathrm{1}+{t}\sqrt{{x}}} \\ $$ $${let}\:{u}=\mathrm{1}−{t}\sqrt{{x}}\:{in}\:{first}\:{and}\:{s}=\mathrm{1}+{t}\sqrt{{x}}\:{in}\:\mathrm{2}{nd} \\ $$ $$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)+\int_{\mathrm{1}} ^{\mathrm{1}−\sqrt{{x}}} \frac{{e}^{\frac{{u}−\mathrm{1}}{\sqrt{{x}}}} }{{u}}{du}+\int_{\mathrm{1}} ^{\mathrm{1}+\sqrt{{x}}} \frac{{e}^{\frac{\mathrm{1}−{s}}{\sqrt{{x}}}} }{{s}}{ds} \\ $$ $$\left.{m}=\frac{{u}}{\sqrt{{x}}}\:{in}\:{first}\:{m}=\frac{{s}}{\sqrt{{x}}}\:\:{in}\right]\mathrm{2}{nd} \\ $$ $$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)+\underset{\frac{\mathrm{1}}{\sqrt{{x}}}} {\int}^{\frac{\mathrm{1}}{\sqrt{{x}}}−\mathrm{1}} \frac{{e}^{{m}} .{e}^{−\frac{\mathrm{1}}{\sqrt{{x}}}} }{{m}}.{dm}+\int_{\frac{\mathrm{1}}{\sqrt{{x}}}} ^{\mathrm{1}+\frac{\mathrm{1}}{\sqrt{{x}}}} {e}^{\frac{\mathrm{1}}{\sqrt{{x}}}} .{e}^{−{m}} .\frac{{dm}}{{m}}\mathrm{346} \\ $$ $${We}\:{use}\:\:{Ei}\left({w}\right)=\int_{−\infty} ^{{w}} \frac{{e}^{{x}} }{{x}}{dx}=\int_{\infty} ^{−{w}} \frac{{e}^{−{x}} }{{x}}{dx} \\ $$ $${Ei}\:\:{is}\:{exponential}\:{integral}\:{function}\: \\ $$ $${we}\:{get}\:−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)+\left\{{Ei}\left(\frac{\mathrm{1}}{\sqrt{{x}}}−\mathrm{1}\right)−{Ei}\left(\frac{\mathrm{1}}{\sqrt{{x}}}\right)\right\}{e}^{\frac{−\mathrm{1}}{\sqrt{{x}}}} +{e}^{\frac{\mathrm{1}}{\sqrt{{x}}}} \left\{{Ei}\left(−\mathrm{1}−\frac{\mathrm{1}}{\sqrt{{x}}}\right)−{Ei}\left(−\frac{\mathrm{1}}{\sqrt{{x}}}\right)\right\} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{t}} {ln}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right){dt}\:{put}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $$={e}^{−\mathrm{1}} {ln}\left(\mathrm{2}\right)+\left\{{Ei}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\mathrm{1}\right)−{Ei}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\right\}{e}^{−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}} +{e}^{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}} \left\{{Ei}\left(−\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)−{Ei}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\right\} \\ $$

Commented bymind is power last updated on 11/Nov/19

y′re welcom

$${y}'{re}\:{welcom} \\ $$

Commented bymathmax by abdo last updated on 11/Nov/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com