Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 73399 by mathocean1 last updated on 11/Nov/19

 { ((x^2 +y^2 =65)),(((x−1)(y−1)=17)) :}    please help me to solve it...

{x2+y2=65(x1)(y1)=17pleasehelpmetosolveit...

Commented by abdomathmax last updated on 11/Nov/19

⇒ { (((x+y)^2 −2xy =65)),((xy−(x+y)+1 =17 ⇒ { ((s^2 −2p =65)),((p−s =16 ⇒)) :})) :}   { ((s^2 −2p=65)),((2p=2s+32 ⇒ { ((s^2 −(2s+32)=65)),((p=s+16 ⇒)) :})) :}   { ((s^2 −2s −32−65 =0)),((p=s+16 ⇒ { ((s^2 −2s −97=0)),((p=s+16 )) :})) :}  let solve  s^2 −2s −97 =0  Δ^′ =98 ⇒s_1 =1+(√(98)) and s_2 =1−(√(98))  s_1 =1+(√(98)) ⇒p_1 =17+(√(98))  s_2 =1−(√(98)) ⇒p_2 =17−(√(98))  we have x+y=s and xy=p ⇒xand y are solution?of  the equation X^2 −sX +p =0  s=s_1 ⇒X^2 −(1+(√(98)))X +17+(√(98))=0  Δ =(1+(√(98)))^2 −4(17+(√(98))) =99 +2(√(98))−68 −4(√(98))  =31−2(√(98))  x=((1+(√(98)) +(√(31−2(√(98)))))/2)  y=((1+(√(98))−(√(31−2(√(98)))))/2)  s=s_2 ⇒X^2 −(1−(√(98)))X +(17−(√(98)))=0  and we follow the same way...

{(x+y)22xy=65xy(x+y)+1=17{s22p=65ps=16{s22p=652p=2s+32{s2(2s+32)=65p=s+16{s22s3265=0p=s+16{s22s97=0p=s+16letsolves22s97=0Δ=98s1=1+98ands2=198s1=1+98p1=17+98s2=198p2=1798wehavex+y=sandxy=pxandyaresolution?oftheequationX2sX+p=0s=s1X2(1+98)X+17+98=0Δ=(1+98)24(17+98)=99+29868498=31298x=1+98+312982y=1+98312982s=s2X2(198)X+(1798)=0andwefollowthesameway...

Answered by $@ty@m123 last updated on 12/Nov/19

(x−1)(y−1)=17  xy−x−y+1=17  2xy−2(x+y)=32 ....(1)  x^2 +y^2 =65 ...(2)  Add ing  x^2 +y^2 +2xy−2(x+y)=97  k^2 −2k−97=0 where k=x+y  k=((2±(√(4+388)))/2)  k=((2±(√(392)))/2)  k=((2±19.8)/2)  k=((21.8)/2), ((−17.8)/2)  k=10.9, −8.9 ....(3)  Subtracting (1) from (2),  x^2 +y^2 −2xy+2(x+y)=33  (x−y)^2 +2(x+y)=33 .....(4)  Case (i) k=10.9 or x+y=10.9 ...(5)  (x−y)^2 +21.8=33  (x−y)^2 =11.2 ⇒ x−y=(√(11.2))   ....(6)  Now solve (5) and (6)    Case (ii) k=−8.9 or x+y=−8.9 ...(7)  (x−y)^2 −17.8=15  (x−y)^2 =17.8+15  (x−y)^2 =32.8  x−y=(√(32.8))  ...(8)  Now solve (7) and (8)

(x1)(y1)=17xyxy+1=172xy2(x+y)=32....(1)x2+y2=65...(2)Addingx2+y2+2xy2(x+y)=97k22k97=0wherek=x+yk=2±4+3882k=2±3922k=2±19.82k=21.82,17.82k=10.9,8.9....(3)Subtracting(1)from(2),x2+y22xy+2(x+y)=33(xy)2+2(x+y)=33.....(4)Case(i)k=10.9orx+y=10.9...(5)(xy)2+21.8=33(xy)2=11.2xy=11.2....(6)Nowsolve(5)and(6)Case(ii)k=8.9orx+y=8.9...(7)(xy)217.8=15(xy)2=17.8+15(xy)2=32.8xy=32.8...(8)Nowsolve(7)and(8)

Answered by ajfour last updated on 11/Nov/19

x−1=p , y−1=q  pq=17  (p+1)^2 +(q+1)^2 =65  (p+q)^2 −2pq+2(p+q)=63  (p+q)^2 +2(p+q)−97=0  p+q=−1±7(√2)  = c  p, q  are roots of  z^2 −cz+17=0  z=(c/2)±(√((c^2 /4)−17))  x=p+1= 1+(c/2)±(√((c^2 /4)−17))  y=q+1 = 1+(c/2)∓(√((c^2 /4)−17))     c = −1±7(√2)   .

x1=p,y1=qpq=17(p+1)2+(q+1)2=65(p+q)22pq+2(p+q)=63(p+q)2+2(p+q)97=0p+q=1±72=cp,qarerootsofz2cz+17=0z=c2±c2417x=p+1=1+c2±c2417y=q+1=1+c2c2417c=1±72.

Commented by mind is power last updated on 11/Nov/19

hello sir  have you post 12 hour ago somthing sbout a polynomial of deg 3∫?  i see it bout i was st worck can you repload it please ?

hellosirhaveyoupost12houragosomthingsboutapolynomialofdeg3?iseeitboutiwasstworckcanyoureploaditplease?

Commented by ajfour last updated on 12/Nov/19

it wasn′t a standard question,  i shall upload another better one  and request you to solve..

itwasntastandardquestion,ishalluploadanotherbetteroneandrequestyoutosolve..

Answered by MJS last updated on 11/Nov/19

x=p−q  y=p+q  (1)  2p^2 +2q^2 =65 ⇒ q^2 =((65)/2)−p^2   (2)  p^2 −2p−q^2 +1=17 ⇒ q^2 =p^2 −2p−16    ((65)/2)−p^2 =p^2 −2p−16  ⇒ p_1 =((1−7(√2))/2); p_2 =((1+7(√2))/2)  ⇒ q_1 =±((√(31+14(√2)))/2); q_2 =±((√(31−14(√2)))/2)  ⇒  x_1 =((1−7(√2))/2)±((√(31+14(√2)))/2); y_1 =((1−7(√2))/2)∓((√(31+14(√2)))/2)  x_2 =((1+7(√2))/2)±((√(31−14(√2)))/2); y_2 =((1+7(√2))/2)∓((√(31−14(√2)))/2)

x=pqy=p+q(1)2p2+2q2=65q2=652p2(2)p22pq2+1=17q2=p22p16652p2=p22p16p1=1722;p2=1+722q1=±31+1422;q2=±311422x1=1722±31+1422;y1=172231+1422x2=1+722±311422;y2=1+722311422

Terms of Service

Privacy Policy

Contact: info@tinkutara.com