Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 73411 by mathmax by abdo last updated on 11/Nov/19

calculate    1)cos(1+i) , sin(1+3i)  2) arctan(i), arctan(2i) , arctan(1+i) ,arctan(1−i) ,  arctan(1+2i).  3) have us  conj(arctanz)=arctan(z^− )?

calculate1)cos(1+i),sin(1+3i)2)arctan(i),arctan(2i),arctan(1+i),arctan(1i),arctan(1+2i).3)haveusconj(arctanz)=arctan(z)?

Commented by mathmax by abdo last updated on 12/Nov/19

1) we use formulas  cos(z)=ch(iz) and sinz =sh(iz) ⇒  cos(1+i) =ch(i(1+i)) =ch(i−1) =((e^(i−1)  +e^(−i+1) )/2)  =((e^(−1) {cos1 +isin1} +e{cos1−isin1})/2)  =(((e+e^(−1) )cos1 −i(e−e^(−1) )sin1)/2) =ch(1)cos1−ish(1)sin(1)  sin(1+3i) =sh(i−3) =((e^(−3+i) −e^(3−i) )/2)  =((e^(−3) {cos1 +isin1}−e^3 {cos1−isin1})/2)  =(((e^(−3) −e^3 )cos(1) +i(e^(−3)  +e^3 )sin1)/2)  =−sh(3)cos1 +i ch(3)sin1

1)weuseformulascos(z)=ch(iz)andsinz=sh(iz)cos(1+i)=ch(i(1+i))=ch(i1)=ei1+ei+12=e1{cos1+isin1}+e{cos1isin1}2=(e+e1)cos1i(ee1)sin12=ch(1)cos1ish(1)sin(1)sin(1+3i)=sh(i3)=e3+ie3i2=e3{cos1+isin1}e3{cos1isin1}2=(e3e3)cos(1)+i(e3+e3)sin12=sh(3)cos1+ich(3)sin1

Commented by mathmax by abdo last updated on 12/Nov/19

2)  we have arctan(z)=(1/(2i))ln(((1+iz)/(1−iz))) ⇒ arctan(i)can not   calculed by this formula  arctan(2i) =(1/(2i))ln(((1+i(2i))/(1−i(2i))))=(1/(2i))ln(((−1)/3))  =(1/(2i))ln(−1)+(1/(2i))ln((1/3)) =(1/(2i))(iπ)−(1/(2i))ln(3)  =(π/2) +(i/2)ln(3)  arctan(1+i) =(1/(2i))ln(((1+i(1+i))/(1−i(1+i)))) =(1/(2i))ln(((1+i−1)/(1−i +1)))  =(1/(2i))ln((i/(2−i))) =(1/(2i)){ln(i)−ln(2−i)}  =(1/(2i)){ ((iπ)/2)−ln((√5)e^(−i arctan((1/2))) }  =(π/4) −(1/(2i))(ln((√5)) −i arctan((1/2)))  =(π/4) +(i/4)ln(5) +(1/2) arctan((1/2))=(π/4) +(1/2) arctan((1/2))+((ln(5))/4)i  arctan(1−i) =(1/(2i))ln(((1+i(1−i))/(1−i(1−i)))) =(1/(2i))ln(((1+i+1)/(1−i−1)))  =(1/(2i))ln(((2+i)/(−i))) =(1/(2i)){ln(2+i)−ln(−i)}  =(1/(2i)){ ln((√5)e^(iarctan((1/2))) +(((iπ)/2))} =(1/(2i))ln((√5))+(1/(2i))(iarctan((1/2)))  +(π/4) =−(i/4)ln(5) +(1/2) arctan((1/2))+(π/4)  =(π/4) +(1/2) arctan((1/2))−((ln(5))/4)i  we see that  conj(arctan(1+i))=arctan(conj(1+i)) rest to prove this result  in general case.  arctan(1+2i) =(1/(2i))ln(((1+i(1+2i))/(1−i(1+2i))))  =(1/(2i))ln( ((1+i−2)/(1−i+2))) =(1/(2i))ln(((−1+i)/(3−i)))  =(1/(2i)){ ln(−1+i)−ln(3−i)}  =(1/(2i)){ ln((√2)e^(−iarctan(1)) )−ln((√(10))e^(−i arctan((1/3))) )}  =(1/(2i)){ ln((√2))−i(π/4)−ln((√(10))) +i arctan((1/3))}  =−(i/4)ln(2)+(i/4)ln(10) −(π/8) +(1/2) arctan((1/3))  =(i/4)ln(5) +(1/2)arctan((1/3))−((ln(2))/4) i  don t forget the formula  arctanz =(1/(2i))ln(((1+iz)/(1−iz)))  z from C

2)wehavearctan(z)=12iln(1+iz1iz)arctan(i)cannotcalculedbythisformulaarctan(2i)=12iln(1+i(2i)1i(2i))=12iln(13)=12iln(1)+12iln(13)=12i(iπ)12iln(3)=π2+i2ln(3)arctan(1+i)=12iln(1+i(1+i)1i(1+i))=12iln(1+i11i+1)=12iln(i2i)=12i{ln(i)ln(2i)}=12i{iπ2ln(5eiarctan(12)}=π412i(ln(5)iarctan(12))=π4+i4ln(5)+12arctan(12)=π4+12arctan(12)+ln(5)4iarctan(1i)=12iln(1+i(1i)1i(1i))=12iln(1+i+11i1)=12iln(2+ii)=12i{ln(2+i)ln(i)}=12i{ln(5eiarctan(12)+(iπ2)}=12iln(5)+12i(iarctan(12))+π4=i4ln(5)+12arctan(12)+π4=π4+12arctan(12)ln(5)4iweseethatconj(arctan(1+i))=arctan(conj(1+i))resttoprovethisresultingeneralcase.arctan(1+2i)=12iln(1+i(1+2i)1i(1+2i))=12iln(1+i21i+2)=12iln(1+i3i)=12i{ln(1+i)ln(3i)}=12i{ln(2eiarctan(1))ln(10eiarctan(13))}=12i{ln(2)iπ4ln(10)+iarctan(13)}=i4ln(2)+i4ln(10)π8+12arctan(13)=i4ln(5)+12arctan(13)ln(2)4idontforgettheformulaarctanz=12iln(1+iz1iz)zfromC

Answered by MJS last updated on 11/Nov/19

formulas:  sin (a+bi) =sin a cosh b +i cos a sinh b  cos (a+bi) =cos a cosh b −i sin a sinh b  tan (a+bi) =((2e^(2b) sin 2a)/(e^(4b) +2e^(2b) cos 2a +1))+((e^(4b) −1)/(e^(4b) +2e^(2b) cos 2a +1))i  csc (a+bi) =((2e^b (e^(2b) +1)sin a)/(e^(4b) −2e^(2b) cos 2a +1))−((2e^b (e^(2b) −1)cos a)/(e^(4b) −2e^(2b) cos 2a +1))i  sec (a+bi) =((2e^b (e^(2b) +1)cos a)/(e^(4b) +2e^(2b) cos 2a +1))+((2e^b (e^(2b) −1)sin a)/(e^(4b) +2e^(2b) cos 2a +1))i  cot (a+bi) =((2e^(2b) (e^(2b) sin 4a +(e^(4b) +1)sin 2a))/(e^(8b) −2e^(4b) cos 4a +1))−(((e^(4b) −1)(e^(4b) +2e^(2b) cos 2a +1))/(e^(8b) −2e^(4b) cos 4a +1))

formulas:sin(a+bi)=sinacoshb+icosasinhbcos(a+bi)=cosacoshbisinasinhbtan(a+bi)=2e2bsin2ae4b+2e2bcos2a+1+e4b1e4b+2e2bcos2a+1icsc(a+bi)=2eb(e2b+1)sinae4b2e2bcos2a+12eb(e2b1)cosae4b2e2bcos2a+1isec(a+bi)=2eb(e2b+1)cosae4b+2e2bcos2a+1+2eb(e2b1)sinae4b+2e2bcos2a+1icot(a+bi)=2e2b(e2bsin4a+(e4b+1)sin2a)e8b2e4bcos4a+1(e4b1)(e4b+2e2bcos2a+1)e8b2e4bcos4a+1

Answered by MJS last updated on 12/Nov/19

formulas for the arc−functions are very  complicated but  arctan (a+bi) =(π/2)sign (a) +(1/2)(arctan ((b−1)/a) −arctan ((b+1)/a)) +(i/4)ln ((a^2 +(b+1)^2 )/(a^2 +(b−1)^2 ))

formulasforthearcfunctionsareverycomplicatedbutarctan(a+bi)=π2sign(a)+12(arctanb1aarctanb+1a)+i4lna2+(b+1)2a2+(b1)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com