Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73429 by Henri Boucatchou last updated on 12/Nov/19

   Solve : ∫(([cos^(−1) x(√(1−x^2 ))]^(−1) )/(log_e [2+((sin(2x(√(1−x^2 ))))/π)]))dx    Evaluate  ∫_(−π/2) ^( π/2) sin^2 xcos^2 x(cosx+sinx)dx

Solve:[cos1x1x2]1loge[2+sin(2x1x2)π]dxEvaluateπ/2π/2sin2xcos2x(cosx+sinx)dx

Commented by MJS last updated on 12/Nov/19

∫sin^2  x cos^2  x (cos x +sin x)dx=  =∫sin^3  x cos^2  x dx+∫sin^2  x cos^3  x dx=  =−((∫sin 5x dx)/(16))+((∫sin 3x dx)/(16))+((∫sin x dx)/8)−       −((∫cos 5x dx)/(16))−((∫cos 3x dx)/(16))+((∫cos x dx)/8)=  =((cos 5x)/(80))−((cos 3x)/(48))−((cos x)/8)−((sin 5x)/(80))−((sin 3x)/(48))+((sin x)/8)+C  ∫_(−(π/2)) ^(π/2) sin^2  x cos^2  x (cos x +sin x)dx=(4/(15))

sin2xcos2x(cosx+sinx)dx==sin3xcos2xdx+sin2xcos3xdx==sin5xdx16+sin3xdx16+sinxdx8cos5xdx16cos3xdx16+cosxdx8==cos5x80cos3x48cosx8sin5x80sin3x48+sinx8+Cπ2π2sin2xcos2x(cosx+sinx)dx=415

Commented by MJS last updated on 12/Nov/19

please check the first one, is it sin or sin^(−1) ?

pleasecheckthefirstone,isitsinorsin1?

Commented by MJS last updated on 12/Nov/19

...anyway I cannot solve it

...anywayIcannotsolveit

Answered by MJS last updated on 12/Nov/19

∫sin^2  x cos^2  x (cos x +sin x)dx=  =∫sin^3  x cos^2  x dx+∫sin^2  x cos^3  x dx=       [u=cos x → dx=−(du/(sin x)); v=sin x → dx=(dv/(cos x))]  =∫u^4 −u^2 du+∫v^2 −v^4 dv=  =(u^5 /5)−(u^3 /3)+(v^3 /3)−(v^5 /5)=  =((cos^5  x)/5)−((cos^3  x)/3)+((sin^3  x)/3)−((sin^5  x)/5)+C  ∫_(−(π/2)) ^(π/2) sin^2  x cos^2  x (cos x +sin x)dx=(4/(15))

sin2xcos2x(cosx+sinx)dx==sin3xcos2xdx+sin2xcos3xdx=[u=cosxdx=dusinx;v=sinxdx=dvcosx]=u4u2du+v2v4dv==u55u33+v33v55==cos5x5cos3x3+sin3x3sin5x5+Cπ2π2sin2xcos2x(cosx+sinx)dx=415

Terms of Service

Privacy Policy

Contact: info@tinkutara.com