Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 73466 by Rio Michael last updated on 12/Nov/19

please explain this    Lim_(x→0) ((sinx)/x) = 1  by l′hopitals theorem    Lim_(x→0)  ((sinx)/x) = 0 by Squeez theorem  is there something wrong?

$${please}\:{explain}\:{this}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\frac{{sinx}}{{x}}\:=\:\mathrm{1}\:\:{by}\:{l}'{hopitals}\:{theorem} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\:\frac{{sinx}}{{x}}\:=\:\mathrm{0}\:{by}\:{Squeez}\:{theorem} \\ $$$${is}\:{there}\:{something}\:{wrong}? \\ $$

Answered by MJS last updated on 12/Nov/19

lim_(x→0)  ((sin x)/x) =1 by Squeeze theorem:  draw a quarter circle within x^+ , y^+  [or for  0≤α≤(π/2)]  you can see that  tan α ≥arc≥sin α  arc=α  tan α ≥α≥sin α  ((sin α)/(cos α))≥α≥sin α  ((cos α)/(sin α))≤(1/α)≤(1/(sin α))  cos α ≤ ((sin α)/α)≤1  lim_(α→0)  cos α =1  ⇒ lim_(x→0)  ((sin x)/x) =1

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}}{{x}}\:=\mathrm{1}\:\mathrm{by}\:\mathrm{Squeeze}\:\mathrm{theorem}: \\ $$$$\mathrm{draw}\:\mathrm{a}\:\mathrm{quarter}\:\mathrm{circle}\:\mathrm{within}\:{x}^{+} ,\:{y}^{+} \:\left[\mathrm{or}\:\mathrm{for}\right. \\ $$$$\left.\mathrm{0}\leqslant\alpha\leqslant\frac{\pi}{\mathrm{2}}\right] \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{see}\:\mathrm{that} \\ $$$$\mathrm{tan}\:\alpha\:\geqslant{arc}\geqslant\mathrm{sin}\:\alpha \\ $$$${arc}=\alpha \\ $$$$\mathrm{tan}\:\alpha\:\geqslant\alpha\geqslant\mathrm{sin}\:\alpha \\ $$$$\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\alpha}\geqslant\alpha\geqslant\mathrm{sin}\:\alpha \\ $$$$\frac{\mathrm{cos}\:\alpha}{\mathrm{sin}\:\alpha}\leqslant\frac{\mathrm{1}}{\alpha}\leqslant\frac{\mathrm{1}}{\mathrm{sin}\:\alpha} \\ $$$$\mathrm{cos}\:\alpha\:\leqslant\:\frac{\mathrm{sin}\:\alpha}{\alpha}\leqslant\mathrm{1} \\ $$$$\underset{\alpha\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{cos}\:\alpha\:=\mathrm{1} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}}{{x}}\:=\mathrm{1} \\ $$

Commented by Rio Michael last updated on 13/Nov/19

thanks sir, i was thinking  i will use        −1≤ sinx ≤ 1    ⇒  −(1/x) ≤ ((sinx)/x) ≤ (1/x)      lim_(x→0)  −(1/x) ≤ lim_(x→0) ((sinx)/x) ≤ lim_(x→0)  (1/x)      0 ≤ lim_(x→0) ((sinx)/x) ≤ 0  ∴  lim_(x→0) ((sinx)/x) = 0

$${thanks}\:{sir},\:{i}\:{was}\:{thinking} \\ $$$${i}\:{will}\:{use}\: \\ $$$$\:\:\:\:\:−\mathrm{1}\leqslant\:{sinx}\:\leqslant\:\mathrm{1} \\ $$$$\:\:\Rightarrow\:\:−\frac{\mathrm{1}}{{x}}\:\leqslant\:\frac{{sinx}}{{x}}\:\leqslant\:\frac{\mathrm{1}}{{x}} \\ $$$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:−\frac{\mathrm{1}}{{x}}\:\leqslant\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sinx}}{{x}}\:\leqslant\underset{{x}\rightarrow\mathrm{0}} {\:{lim}}\:\frac{\mathrm{1}}{{x}} \\ $$$$\:\:\:\:\mathrm{0}\:\leqslant\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sinx}}{{x}}\:\leqslant\:\mathrm{0} \\ $$$$\therefore\:\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sinx}}{{x}}\:=\:\mathrm{0} \\ $$

Commented by MJS last updated on 13/Nov/19

this is not possible because  lim_(x→0) ±(1/x)=±∞

$$\mathrm{this}\:\mathrm{is}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{because} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\pm\frac{\mathrm{1}}{{x}}=\pm\infty \\ $$

Commented by Rio Michael last updated on 13/Nov/19

thanks sir

$${thanks}\:{sir}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com