Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73484 by abdomathmax last updated on 13/Nov/19

decompose inside C(x) the fraction  F(x)=(1/((x^2  +1)^n ))  calculate ∫_0 ^∞  F(x)dx

decomposeinsideC(x)thefractionF(x)=1(x2+1)ncalculate0F(x)dx

Answered by mind is power last updated on 13/Nov/19

F(x)=(1/2)∫_(−∞) ^(+∞) (dx/((x^2 +1)^n ))  =iπRes((1/((x^2 +1)^n )),i)  =iπ.(1/((n−1)!))(d^(n−1) /dx^(n−1) ).(x−i)^n .(1/((x−i)^n (x+i)^n ))∣_(x=i)   f(x)=(1/((x+i)^n )),f^((k)) =(((−1)^k .n.(n+1)...(n+k−1))/((x+i)^(n+k) ))  f^((n−)) (i)=(((−1)^(n−1) .n.....(2n−2))/((2i)^(2n−1)  ))=−2i((n....(2n−2))/4^n )=−2i(((2n−2)!)/(4^n .(n−1)!))  =−2i(n−1)!.C_(2n−2) ^(n−1)   F(x)=(1/2)∫_(−∞) ^(+∞) (dx/((x^2 +1)^n ))=.((iπ)/((n−1)!)).−2i(n−1)C_(2n−1) ^(n−1) .(1/4^n )=π(C_(2n−2) ^(n−1) /2^(2n−1) )  2nd Methode  ∫_0 ^(+∞) (dx/((x^2 +1)))=∫_0 ^(π/2) ((d(tg(t)))/((1+tg^2 (t))^n ))=∫_0 ^(π/2) (((1+tg^2 (t))dt)/((1+tg^2 (t))^n ))  =∫_0 ^(π/2) (dt/((1+tg^2 (t))^(n−1) ))=∫_0 ^(π/2) cos^(2n−2) (t)dt=W_(2n−2) ..walise  or,use B(x,y)=2∫_0 ^(π/2) cos^(2x−1) (t)sin^(2y−1) (t)dt  B(n−(1/2),(1/2))=2∫_0 ^(π/2) .cos^(2n−2) (t)dt=((Γ(n−(1/2)).Γ((1/2)))/(Γ(n)))    Γ((1/2))=(√π)  Γ(n−(1/2))=Γ(((2n−1)/2))=Γ(((2n−3)/2)+1)=(((2n−3))/2)......(1/2).(√π)  =(((2n−3).....1.)/2^(n−1) )(√π)...n≥2  B(n−(1/2),(1/2))=((√π)/2^(n−1) ).(2n−3)....(1).(√π).(1/((n−1)!))  =((π.(2n−3)....1.....2.4.....(2n−2))/(2^(n−1) (n−1)!.2^(n−1) .(n−1)!))=π(C_(2n−2) ^(n−1) /2^(2n−2) )=2∫_0 ^(π/2) cos^(2n−2) (t)dt  ⇒∫_0 ^(π/2) cos^(2n−2) (t)dt=(π/2)(C_(2n−2) ^(n−1) /2^(2n−2) )=π(C_(2n−2) ^(n−1) /2^(2n−1) )

F(x)=12+dx(x2+1)n=iπRes(1(x2+1)n,i)=iπ.1(n1)!dn1dxn1.(xi)n.1(xi)n(x+i)nx=if(x)=1(x+i)n,f(k)=(1)k.n.(n+1)...(n+k1)(x+i)n+kf(n)(i)=(1)n1.n.....(2n2)(2i)2n1=2in....(2n2)4n=2i(2n2)!4n.(n1)!=2i(n1)!.C2n2n1F(x)=12+dx(x2+1)n=.iπ(n1)!.2i(n1)C2n1n1.14n=πC2n2n122n12ndMethode0+dx(x2+1)=0π2d(tg(t))(1+tg2(t))n=0π2(1+tg2(t))dt(1+tg2(t))n=0π2dt(1+tg2(t))n1=0π2cos2n2(t)dt=W2n2..waliseor,useB(x,y)=20π2cos2x1(t)sin2y1(t)dtB(n12,12)=20π2.cos2n2(t)dt=Γ(n12).Γ(12)Γ(n)Γ(12)=πΓ(n12)=Γ(2n12)=Γ(2n32+1)=(2n3)2......12.π=(2n3).....1.2n1π...n2B(n12,12)=π2n1.(2n3)....(1).π.1(n1)!=π.(2n3)....1.....2.4.....(2n2)2n1(n1)!.2n1.(n1)!=πC2n2n122n2=20π2cos2n2(t)dt0π2cos2n2(t)dt=π2C2n2n122n2=πC2n2n122n1

Commented by abdomathmax last updated on 17/Nov/19

thsnkx sir.

thsnkxsir.

Commented by mind is power last updated on 17/Nov/19

y′re welcom

yrewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com