All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 73484 by abdomathmax last updated on 13/Nov/19
decomposeinsideC(x)thefractionF(x)=1(x2+1)ncalculate∫0∞F(x)dx
Answered by mind is power last updated on 13/Nov/19
F(x)=12∫−∞+∞dx(x2+1)n=iπRes(1(x2+1)n,i)=iπ.1(n−1)!dn−1dxn−1.(x−i)n.1(x−i)n(x+i)n∣x=if(x)=1(x+i)n,f(k)=(−1)k.n.(n+1)...(n+k−1)(x+i)n+kf(n−)(i)=(−1)n−1.n.....(2n−2)(2i)2n−1=−2in....(2n−2)4n=−2i(2n−2)!4n.(n−1)!=−2i(n−1)!.C2n−2n−1F(x)=12∫−∞+∞dx(x2+1)n=.iπ(n−1)!.−2i(n−1)C2n−1n−1.14n=πC2n−2n−122n−12ndMethode∫0+∞dx(x2+1)=∫0π2d(tg(t))(1+tg2(t))n=∫0π2(1+tg2(t))dt(1+tg2(t))n=∫0π2dt(1+tg2(t))n−1=∫0π2cos2n−2(t)dt=W2n−2..waliseor,useB(x,y)=2∫0π2cos2x−1(t)sin2y−1(t)dtB(n−12,12)=2∫0π2.cos2n−2(t)dt=Γ(n−12).Γ(12)Γ(n)Γ(12)=πΓ(n−12)=Γ(2n−12)=Γ(2n−32+1)=(2n−3)2......12.π=(2n−3).....1.2n−1π...n⩾2B(n−12,12)=π2n−1.(2n−3)....(1).π.1(n−1)!=π.(2n−3)....1.....2.4.....(2n−2)2n−1(n−1)!.2n−1.(n−1)!=πC2n−2n−122n−2=2∫0π2cos2n−2(t)dt⇒∫0π2cos2n−2(t)dt=π2C2n−2n−122n−2=πC2n−2n−122n−1
Commented by abdomathmax last updated on 17/Nov/19
thsnkxsir.
Commented by mind is power last updated on 17/Nov/19
y′rewelcom
Terms of Service
Privacy Policy
Contact: info@tinkutara.com