All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 73487 by abdomathmax last updated on 13/Nov/19
letαandβrootsoftheequationx2−x+2=0simplifyAp=αp+βpandcalculate∑p=0n−1Apand∑p=0n−1Ap2
Commented by mathmax by abdo last updated on 15/Nov/19
letsolvex2−x+2=0→Δ=1−8=−7⇒α=1+i72andβ=1−i72∣α∣=121+7=222=2⇒α=2eiarctan(7)andβ=2e−iarctan(7)Ap=αp+βp=(2)peiparctan(7)+(2)pe−iparctan(7)=2p2×2Re(eiparctan(7))=21+p2cos(parctan(7))∑p=0n−1Ap=∑p=0n−121+p2cos(parctan(7))=Re(2∑p=0n−1(2)peiparctan(7))wehave∑p=0n−1(2)peiparctan(7))=∑p=0n−1(2eiarctan(7))p=1−(2eiarctan(7))n1−2eiarctan(7)=1−(2)neinarctan(7)1−2eisrctan(7)=(1−(2)n(cos(narctan(7)+isin(narctan(7))1−2(cos(arctan(7)+isin(arctan(7))resttoextractRe(ofthisquantity...)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com