Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 73487 by abdomathmax last updated on 13/Nov/19

let    α and β roots of  the equation  x^2 −x+2=0  simplify   A_p = α^p  +β^p  and calculate  Σ_(p=0) ^(n−1)  A_p   and Σ_(p=0) ^(n−1)   A_p ^2

letαandβrootsoftheequationx2x+2=0simplifyAp=αp+βpandcalculatep=0n1Apandp=0n1Ap2

Commented by mathmax by abdo last updated on 15/Nov/19

letsolve x^2 −x +2 =0 →Δ=1−8=−7  ⇒  α=((1+i(√7))/2)  and β=((1−i(√7))/2)  ∣α∣=(1/2)(√(1+7))=((2(√2))/2) =(√2) ⇒α=(√2)e^(iarctan((√7)))   and β =(√2)e^(−iarctan((√7)))   A_p =α^p  +β^p  =((√2))^p  e^(ip arctan((√7)))  +((√2))^p  e^(−ip arctan((√7)))   =2^(p/2) ×2 Re(e^(ip arctan((√7))) ) =2^(1+(p/2))   cos(p arctan((√7)))  Σ_(p=0) ^(n−1)  A_p =Σ_(p=0) ^(n−1)  2^(1+(p/2)) cos(parctan((√7)))  =Re(2Σ_(p=0) ^(n−1)  ((√2))^p  e^(ip arctan((√7))) )  we have  Σ_(p=0) ^(n−1) ((√2))^p  e^(ip arctan((√7))) ) =Σ_(p=0) ^(n−1) ((√2)e^(i arctan((√7))) )^p   =((1−((√2)e^(i arctan((√7))) )^n )/(1−(√2)e^(i arctan((√7))) )) =((1−((√2))^n  e^(in arctan((√7))) )/(1−(√2)e^(isrctan((√7))) ))  =(((1−((√2))^n ( cos(narctan((√7)) +isin(narctan((√7))))/(1−(√2)(cos(arctan((√7))+isin(arctan((√7)))))  rest to extract  Re (of this quantity...)

letsolvex2x+2=0Δ=18=7α=1+i72andβ=1i72α∣=121+7=222=2α=2eiarctan(7)andβ=2eiarctan(7)Ap=αp+βp=(2)peiparctan(7)+(2)peiparctan(7)=2p2×2Re(eiparctan(7))=21+p2cos(parctan(7))p=0n1Ap=p=0n121+p2cos(parctan(7))=Re(2p=0n1(2)peiparctan(7))wehavep=0n1(2)peiparctan(7))=p=0n1(2eiarctan(7))p=1(2eiarctan(7))n12eiarctan(7)=1(2)neinarctan(7)12eisrctan(7)=(1(2)n(cos(narctan(7)+isin(narctan(7))12(cos(arctan(7)+isin(arctan(7))resttoextractRe(ofthisquantity...)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com