Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 73488 by abdomathmax last updated on 13/Nov/19

solve   xy^(′′)   +(x^2 −1)y^′   =x e^(−x^2 )

solvexy+(x21)y=xex2

Commented by mathmax by abdo last updated on 14/Nov/19

let  y^′ =z   (e) ⇒xz^′  +(x^2 −1)z =xe^(−x^2 )   (he)→ xz^′  +(x^2 −1)z =o ⇒xz^′  =(1−x^2 )z ⇒(z^′ /z) =((1−x^2 )/x) ⇒  (z^′ /z) =(1/x) −x ⇒ ln∣z∣ =ln∣x∣ −(x^2 /2) +c ⇒z =k∣x∣ e^(−(x^2 /2))   (we search solutin  on[0,+∞[) ⇒z =k x e^(−(x^2 /2))   let use mvc method we have z^′  =k^′ xe^(−(x^2 /2))   +k{ e^(−(x^2 /2))  +x(−x)e^(−(x^2 /2)) } =k^′  x e^(−(x^2 /2)) +k(1−x^2 )e^(−(x^2 /2))   (e) ⇒k^′ x^2  e^(−(x^2 /2))  + k(1−x^2 )e^(−(x^2 /2))  +(x^2 −1)kxe^(−(x^2 /2))  =xe^(−x^2 )  ⇒  k^′  =((xe^(−x^2 ) )/(x^2  e^(−(x^2 /2)) )) =(1/x) e^(−x^2  +(x^2 /2))  =(1/x) e^(−(x^2 /2))  ⇒  k(x) =∫_1 ^x  (e^(−(t^2 /2)) /t) dt +c    (c=k(1)  we have z(1)=k(1)e^(−(1/2))  ⇒  k(1) =z(1)e^(1/2)   we have z(x)=xk(x)e^(−(x^2 /2))   =xe^(−(x^2 /2)) {  ∫_1 ^x   (e^(−(t^2 /2)) /t)dt  +z(1)e^(1/2) }  we have y^′ =z ⇒  y(x)=∫_. ^x  z(u)du +C   =∫_. ^x  { u e^(−(u^2 /2)) {   ∫_1 ^u  (e^(−(t^2 /2)) /t)dt +z(1)(√e)}}du  +C

lety=z(e)xz+(x21)z=xex2(he)xz+(x21)z=oxz=(1x2)zzz=1x2xzz=1xxlnz=lnxx22+cz=kxex22(wesearchsolutinon[0,+[)z=kxex22letusemvcmethodwehavez=kxex22+k{ex22+x(x)ex22}=kxex22+k(1x2)ex22(e)kx2ex22+k(1x2)ex22+(x21)kxex22=xex2k=xex2x2ex22=1xex2+x22=1xex22k(x)=1xet22tdt+c(c=k(1)wehavez(1)=k(1)e12k(1)=z(1)e12wehavez(x)=xk(x)ex22=xex22{1xet22tdt+z(1)e12}wehavey=zy(x)=.xz(u)du+C=.x{ueu22{1uet22tdt+z(1)e}}du+C

Answered by mind is power last updated on 13/Nov/19

y′=z  homgen  xz′+(x^2 −1)z=0  ⇒((z′)/z)=(1/x)−x⇒ln∣z∣=−(x^2 /2)+ln(x)⇒z=kxe^(−(x^2 /2))   xz′+(x^2 −1)z=xe^(−x^2 )   x(k′xe^(−(x^2 /2)) +(e^(−(x^2 /2)) −x^2 e^((−x^2 )/2) )k)+(x^2 −1)kxe^(−(x^2 /2)) =xe^(−x^2 )   ⇒k′x^2 e^(−(x^2 /2)) =xe^(−x^2 )   k′=(e^(−(x^2 /2)) /x)  k=∫(e^(−x^2 ) /x)dx  x=(√t)⇒dx=(dt/(2(√t)))  ∫(e^(−t) /(2t))dt=∫(e^t /(2t))dt=(1/2)E_i (−t)  E_i =exponential integral function  ⇒k=((Ei(−x^2 ))/2)+c  ⇒z(x)=xe^(−(x^2 /2)) {∫(e^(−x^2 ) /x)dx+c}=(1/2)xe^(−(x^2 /2)) Ei(−x^2 )+c((xe^(−(x^2 /2)) )/2)  y=∫z(x)dx  by part  =−(e^(−(x^2 /2)) /2)Ei(−x^2 )+(1/2)∫e^(−(x^2 /2)) .(e^(−x^2 ) /x)dx−(c/4)xe^(−(x^2 /2))   =−(e^(−(x^2 /2)) /2)E_i (−x^2 )+(1/2)∫(e^(−((3/2))x^2 ) /x)dx  (3/2)x^2 =t⇒(1/2)∫ ((e^(−t)  )/t).dt=(1/2)E_i (−t)=(1/2)E_i (−(3/2)x^2 )+d  y(x)=−(e^(−(x^2 /2)) /2)E_i (−x^2 )+(1/4)E_i (−((3x^2 )/2))−((cxe^(−(x^2 /2)) )/4)+d  c,d constante

y=zhomgenxz+(x21)z=0zz=1xxlnz∣=x22+ln(x)z=kxex22xz+(x21)z=xex2x(kxex22+(ex22x2ex22)k)+(x21)kxex22=xex2kx2ex22=xex2k=ex22xk=ex2xdxx=tdx=dt2tet2tdt=et2tdt=12Ei(t)Ei=exponentialintegralfunctionk=Ei(x2)2+cz(x)=xex22{ex2xdx+c}=12xex22Ei(x2)+cxex222y=z(x)dxbypart=ex222Ei(x2)+12ex22.ex2xdxc4xex22=ex222Ei(x2)+12e(32)x2xdx32x2=t12ett.dt=12Ei(t)=12Ei(32x2)+dy(x)=ex222Ei(x2)+14Ei(3x22)cxex224+dc,dconstante

Answered by arkanmath7@gmail.com last updated on 13/Nov/19

let  y^′  = p   ,   y′′ = p^′   xp^′  + (x^2  − 1)p = xe^(−x^2 )        /x  p^′   + (x − (1/x))p = e^(−x^2 )   P (x) = x − (1/x)   ,   Q (x) = e^(−x^2 )   p = e^(−∫P (x)dx)  [∫Q (x) e^(∫P (x)dx)   dx]  p = e^(−∫(x−(1/x))dx)  [∫e^(−x^2 ) e^(∫(x − (1/x))dx)   dx]  p = e^(−(x^2 /2) + lnx)  [∫e^(−x^2 ) e^((x^2 /2) − lnx)   dx]  p = e^(−(x^2 /2))  e^( lnx)  [∫e^(−x^2 ) e^((x^2 /2) )  e^(lnx ) dx]    p = xe^(−(x^2 /2))  [∫−x e^(−(1/2)x^2 ) dx]  p = xe^(−(x^2 /2))  [(1/2) e^(−(1/2)x^2 )  + c]  p = (1/2)xe^(−x^2 )   + cxe^(−(x^2 /2))   (dy/dx) = (1/2)xe^(−x^2 )   + cxe^(−(x^2 /2))     dy = ((1/2)xe^(−x^2 )   + cxe^(−(x^2 /2)) )dx    ∫dy = ∫((1/2)xe^(−x^2 )   + cxe^(−(x^2 /2)) )dx    y = − (1/4) e^(−x^2  ) −ce^(−(x^2 /2))  + c_1

lety=p,y=pxp+(x21)p=xex2/xp+(x1x)p=ex2P(x)=x1x,Q(x)=ex2p=eP(x)dx[Q(x)eP(x)dxdx]p=e(x1x)dx[ex2e(x1x)dxdx]p=ex22+lnx[ex2ex22lnxdx]p=ex22elnx[ex2ex22elnxdx]p=xex22[xe12x2dx]p=xex22[12e12x2+c]p=12xex2+cxex22dydx=12xex2+cxex22dy=(12xex2+cxex22)dxdy=(12xex2+cxex22)dxy=14ex2cex22+c1

Commented by mind is power last updated on 13/Nov/19

lin 8 e^(−ln(x)) .not e^(ln(x))

lin8eln(x).noteln(x)

Commented by arkanmath7@gmail.com last updated on 13/Nov/19

yes true

yestrue

Commented by arkanmath7@gmail.com last updated on 13/Nov/19

mistake!

mistake!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com