Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 73503 by ajfour last updated on 13/Nov/19

Commented by ajfour last updated on 13/Nov/19

Find the illuminated curved  area of cone with radius a, and  altitude a(√3) . Only the right half  of cone is there with left half  covered but with a largest circular  opening in it. Light is incident  from a plane wall sending  horizontal parallel rays.

Findtheilluminatedcurvedareaofconewithradiusa,andaltitudea3.Onlytherighthalfofconeistherewithlefthalfcoveredbutwithalargestcircularopeninginit.Lightisincidentfromaplanewallsendinghorizontalparallelrays.

Commented by mr W last updated on 14/Nov/19

how is the answer, if the opening is  a square?

howistheanswer,iftheopeningisasquare?

Answered by mr W last updated on 13/Nov/19

Commented by mr W last updated on 14/Nov/19

OD′=(√3)a  OC=OD=2a  C′D′=a sin θ  OC′=(√(3a^2 +a^2 sin^2  θ))=a(√(3+sin^2  θ))  ∠C′OD′=ϕ  tan ϕ=((sin θ)/(√3))  ⇒cos ϕ=((√3)/(√(3+sin^2  θ)))  ⇒4cos^2  ϕ−3=((3 cos^2  θ)/(3+sin^2  θ))  r=(a/(√3))  OM=((2a)/(√3))  r^2 =OA′^2 +OM^2 −2×OA′×OM cos ϕ  (a^2 /3)=OA′^2 +((4a^2 )/3)−2×OA′×((2a)/(√3)) cos ϕ  OA′^2 −OA′×((4a)/(√3)) cos ϕ+a^2 =0  OA′=((2a cos ϕ)/(√3))−(√(((4a^2  cos^2  ϕ)/3)−a^2 ))  OA′=(((2 cos ϕ−(√(4 cos^2  ϕ−3)))a)/(√3))  OB′=(((2 cos ϕ+(√(4 cos^2  ϕ−3)))a)/(√3))  ((OA)/(OA′))=((OC)/(OC′))=(2/(√(3+sin^2  θ)))  ⇒OA=((2(2 cos ϕ−(√(4 cos^2  ϕ−3)))a)/(√(3(3+sin^2  θ))))  similarly  ⇒OB=((2(2 cos ϕ+(√(4 cos^2  ϕ−3)))a)/(√(3(3+sin^2  θ))))  CD^(⌢) =a θ=2a φ  ⇒φ=(θ/2)  dA=(1/2)(OB^2 −OA^2 )dφ  dA=2a^2 [(((2 cos ϕ+(√(4 cos^2  ϕ−3)))^2 −(2 cos ϕ−(√(4 cos^2  ϕ−3)))^2 )/(3(3+sin^2  θ)))]dφ  dA=((8a^2 )/3)[((cos ϕ (√(4 cos^2  ϕ−3)))/(3+sin^2  θ))]dθ  dA=((8a^2  cos θ dθ)/((3+sin^2  θ)^2 ))  A=2×8a^2 ∫_0 ^(π/2) ((cos θ dθ)/((3+sin^2  θ)^2 ))  A=16a^2 ∫_0 ^(π/2) ((d (sin θ))/((3+sin^2  θ)^2 ))  A=16a^2 ∫_0 ^1 (dt/((3+t^2 )^2 ))  A=((8a^2 )/3)[(1/(√3)) tan^(−1) (t/(√3))+(t/(t^2 +3))]_0 ^1   A=((8a^2 )/3)((1/(√3))×(π/6)+(1/4))  ⇒A=((2(2(√3)π+9)a^2 )/(27))≈1.4728a^2     Area of surface of semi−cone:  (1/2)×(π/2)×(2a)^2 =π a^2   ((1.4728a^2 )/(πa^2 ))=0.47=47%  i.e. 47% of the semi cone surface is  lighted.

OD=3aOC=OD=2aCD=asinθOC=3a2+a2sin2θ=a3+sin2θCOD=φtanφ=sinθ3cosφ=33+sin2θ4cos2φ3=3cos2θ3+sin2θr=a3OM=2a3r2=OA2+OM22×OA×OMcosφa23=OA2+4a232×OA×2a3cosφOA2OA×4a3cosφ+a2=0OA=2acosφ34a2cos2φ3a2OA=(2cosφ4cos2φ3)a3OB=(2cosφ+4cos2φ3)a3OAOA=OCOC=23+sin2θOA=2(2cosφ4cos2φ3)a3(3+sin2θ)similarlyOB=2(2cosφ+4cos2φ3)a3(3+sin2θ)CD=aθ=2aϕϕ=θ2dA=12(OB2OA2)dϕdA=2a2[(2cosφ+4cos2φ3)2(2cosφ4cos2φ3)23(3+sin2θ)]dϕdA=8a23[cosφ4cos2φ33+sin2θ]dθdA=8a2cosθdθ(3+sin2θ)2A=2×8a20π2cosθdθ(3+sin2θ)2A=16a20π2d(sinθ)(3+sin2θ)2A=16a201dt(3+t2)2A=8a23[13tan1t3+tt2+3]01A=8a23(13×π6+14)A=2(23π+9)a2271.4728a2Areaofsurfaceofsemicone:12×π2×(2a)2=πa21.4728a2πa2=0.47=47%i.e.47%ofthesemiconesurfaceislighted.

Commented by mr W last updated on 13/Nov/19

Commented by mr W last updated on 13/Nov/19

Commented by mr W last updated on 13/Nov/19

this is how the lighted area really  looks like:

thisishowthelightedareareallylookslike:

Commented by mr W last updated on 14/Nov/19

Commented by ajfour last updated on 14/Nov/19

Thanks Sir, SPLENDID solution!  (nice reverse swing !).

ThanksSir,SPLENDIDsolution!(nicereverseswing!).

Commented by mr W last updated on 14/Nov/19

thanks for viewing sir! it′s a very  nice question!

thanksforviewingsir!itsaverynicequestion!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com