Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 73503 by ajfour last updated on 13/Nov/19

Commented by ajfour last updated on 13/Nov/19

Find the illuminated curved  area of cone with radius a, and  altitude a(√3) . Only the right half  of cone is there with left half  covered but with a largest circular  opening in it. Light is incident  from a plane wall sending  horizontal parallel rays.

$${Find}\:{the}\:{illuminated}\:{curved} \\ $$$${area}\:{of}\:{cone}\:{with}\:{radius}\:{a},\:{and} \\ $$$${altitude}\:{a}\sqrt{\mathrm{3}}\:.\:{Only}\:{the}\:{right}\:{half} \\ $$$${of}\:{cone}\:{is}\:{there}\:{with}\:{left}\:{half} \\ $$$${covered}\:{but}\:{with}\:{a}\:{largest}\:{circular} \\ $$$${opening}\:{in}\:{it}.\:{Light}\:{is}\:{incident} \\ $$$${from}\:{a}\:{plane}\:{wall}\:{sending} \\ $$$${horizontal}\:{parallel}\:{rays}.\:\:\:\:\:\:\:\: \\ $$

Commented by mr W last updated on 14/Nov/19

how is the answer, if the opening is  a square?

$${how}\:{is}\:{the}\:{answer},\:{if}\:{the}\:{opening}\:{is} \\ $$$${a}\:{square}? \\ $$

Answered by mr W last updated on 13/Nov/19

Commented by mr W last updated on 14/Nov/19

OD′=(√3)a  OC=OD=2a  C′D′=a sin θ  OC′=(√(3a^2 +a^2 sin^2  θ))=a(√(3+sin^2  θ))  ∠C′OD′=ϕ  tan ϕ=((sin θ)/(√3))  ⇒cos ϕ=((√3)/(√(3+sin^2  θ)))  ⇒4cos^2  ϕ−3=((3 cos^2  θ)/(3+sin^2  θ))  r=(a/(√3))  OM=((2a)/(√3))  r^2 =OA′^2 +OM^2 −2×OA′×OM cos ϕ  (a^2 /3)=OA′^2 +((4a^2 )/3)−2×OA′×((2a)/(√3)) cos ϕ  OA′^2 −OA′×((4a)/(√3)) cos ϕ+a^2 =0  OA′=((2a cos ϕ)/(√3))−(√(((4a^2  cos^2  ϕ)/3)−a^2 ))  OA′=(((2 cos ϕ−(√(4 cos^2  ϕ−3)))a)/(√3))  OB′=(((2 cos ϕ+(√(4 cos^2  ϕ−3)))a)/(√3))  ((OA)/(OA′))=((OC)/(OC′))=(2/(√(3+sin^2  θ)))  ⇒OA=((2(2 cos ϕ−(√(4 cos^2  ϕ−3)))a)/(√(3(3+sin^2  θ))))  similarly  ⇒OB=((2(2 cos ϕ+(√(4 cos^2  ϕ−3)))a)/(√(3(3+sin^2  θ))))  CD^(⌢) =a θ=2a φ  ⇒φ=(θ/2)  dA=(1/2)(OB^2 −OA^2 )dφ  dA=2a^2 [(((2 cos ϕ+(√(4 cos^2  ϕ−3)))^2 −(2 cos ϕ−(√(4 cos^2  ϕ−3)))^2 )/(3(3+sin^2  θ)))]dφ  dA=((8a^2 )/3)[((cos ϕ (√(4 cos^2  ϕ−3)))/(3+sin^2  θ))]dθ  dA=((8a^2  cos θ dθ)/((3+sin^2  θ)^2 ))  A=2×8a^2 ∫_0 ^(π/2) ((cos θ dθ)/((3+sin^2  θ)^2 ))  A=16a^2 ∫_0 ^(π/2) ((d (sin θ))/((3+sin^2  θ)^2 ))  A=16a^2 ∫_0 ^1 (dt/((3+t^2 )^2 ))  A=((8a^2 )/3)[(1/(√3)) tan^(−1) (t/(√3))+(t/(t^2 +3))]_0 ^1   A=((8a^2 )/3)((1/(√3))×(π/6)+(1/4))  ⇒A=((2(2(√3)π+9)a^2 )/(27))≈1.4728a^2     Area of surface of semi−cone:  (1/2)×(π/2)×(2a)^2 =π a^2   ((1.4728a^2 )/(πa^2 ))=0.47=47%  i.e. 47% of the semi cone surface is  lighted.

$${OD}'=\sqrt{\mathrm{3}}{a} \\ $$$${OC}={OD}=\mathrm{2}{a} \\ $$$${C}'{D}'={a}\:\mathrm{sin}\:\theta \\ $$$${OC}'=\sqrt{\mathrm{3}{a}^{\mathrm{2}} +{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}={a}\sqrt{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\angle{C}'{OD}'=\varphi \\ $$$$\mathrm{tan}\:\varphi=\frac{\mathrm{sin}\:\theta}{\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\mathrm{cos}\:\varphi=\frac{\sqrt{\mathrm{3}}}{\sqrt{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$\Rightarrow\mathrm{4cos}^{\mathrm{2}} \:\varphi−\mathrm{3}=\frac{\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$${r}=\frac{{a}}{\sqrt{\mathrm{3}}} \\ $$$${OM}=\frac{\mathrm{2}{a}}{\sqrt{\mathrm{3}}} \\ $$$${r}^{\mathrm{2}} ={OA}'^{\mathrm{2}} +{OM}^{\mathrm{2}} −\mathrm{2}×{OA}'×{OM}\:\mathrm{cos}\:\varphi \\ $$$$\frac{{a}^{\mathrm{2}} }{\mathrm{3}}={OA}'^{\mathrm{2}} +\frac{\mathrm{4}{a}^{\mathrm{2}} }{\mathrm{3}}−\mathrm{2}×{OA}'×\frac{\mathrm{2}{a}}{\sqrt{\mathrm{3}}}\:\mathrm{cos}\:\varphi \\ $$$${OA}'^{\mathrm{2}} −{OA}'×\frac{\mathrm{4}{a}}{\sqrt{\mathrm{3}}}\:\mathrm{cos}\:\varphi+{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${OA}'=\frac{\mathrm{2}{a}\:\mathrm{cos}\:\varphi}{\sqrt{\mathrm{3}}}−\sqrt{\frac{\mathrm{4}{a}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\varphi}{\mathrm{3}}−{a}^{\mathrm{2}} } \\ $$$${OA}'=\frac{\left(\mathrm{2}\:\mathrm{cos}\:\varphi−\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right){a}}{\sqrt{\mathrm{3}}} \\ $$$${OB}'=\frac{\left(\mathrm{2}\:\mathrm{cos}\:\varphi+\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right){a}}{\sqrt{\mathrm{3}}} \\ $$$$\frac{{OA}}{{OA}'}=\frac{{OC}}{{OC}'}=\frac{\mathrm{2}}{\sqrt{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$\Rightarrow{OA}=\frac{\mathrm{2}\left(\mathrm{2}\:\mathrm{cos}\:\varphi−\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right){a}}{\sqrt{\mathrm{3}\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)}} \\ $$$${similarly} \\ $$$$\Rightarrow{OB}=\frac{\mathrm{2}\left(\mathrm{2}\:\mathrm{cos}\:\varphi+\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right){a}}{\sqrt{\mathrm{3}\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)}} \\ $$$$\overset{\frown} {{CD}}={a}\:\theta=\mathrm{2}{a}\:\phi \\ $$$$\Rightarrow\phi=\frac{\theta}{\mathrm{2}} \\ $$$${dA}=\frac{\mathrm{1}}{\mathrm{2}}\left({OB}^{\mathrm{2}} −{OA}^{\mathrm{2}} \right){d}\phi \\ $$$${dA}=\mathrm{2}{a}^{\mathrm{2}} \left[\frac{\left(\mathrm{2}\:\mathrm{cos}\:\varphi+\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right)^{\mathrm{2}} −\left(\mathrm{2}\:\mathrm{cos}\:\varphi−\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{3}\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)}\right]{d}\phi \\ $$$${dA}=\frac{\mathrm{8}{a}^{\mathrm{2}} }{\mathrm{3}}\left[\frac{\mathrm{cos}\:\varphi\:\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\varphi−\mathrm{3}}}{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta}\right]{d}\theta \\ $$$${dA}=\frac{\mathrm{8}{a}^{\mathrm{2}} \:\mathrm{cos}\:\theta\:{d}\theta}{\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${A}=\mathrm{2}×\mathrm{8}{a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:\theta\:{d}\theta}{\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${A}=\mathrm{16}{a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{d}\:\left(\mathrm{sin}\:\theta\right)}{\left(\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$${A}=\mathrm{16}{a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\left(\mathrm{3}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${A}=\frac{\mathrm{8}{a}^{\mathrm{2}} }{\mathrm{3}}\left[\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\:\mathrm{tan}^{−\mathrm{1}} \frac{{t}}{\sqrt{\mathrm{3}}}+\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${A}=\frac{\mathrm{8}{a}^{\mathrm{2}} }{\mathrm{3}}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}×\frac{\pi}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{A}=\frac{\mathrm{2}\left(\mathrm{2}\sqrt{\mathrm{3}}\pi+\mathrm{9}\right){a}^{\mathrm{2}} }{\mathrm{27}}\approx\mathrm{1}.\mathrm{4728}{a}^{\mathrm{2}} \\ $$$$ \\ $$$${Area}\:{of}\:{surface}\:{of}\:{semi}−{cone}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{2}}×\left(\mathrm{2}{a}\right)^{\mathrm{2}} =\pi\:{a}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}.\mathrm{4728}{a}^{\mathrm{2}} }{\pi{a}^{\mathrm{2}} }=\mathrm{0}.\mathrm{47}=\mathrm{47\%} \\ $$$${i}.{e}.\:\mathrm{47\%}\:{of}\:{the}\:{semi}\:{cone}\:{surface}\:{is} \\ $$$${lighted}. \\ $$

Commented by mr W last updated on 13/Nov/19

Commented by mr W last updated on 13/Nov/19

Commented by mr W last updated on 13/Nov/19

this is how the lighted area really  looks like:

$${this}\:{is}\:{how}\:{the}\:{lighted}\:{area}\:{really} \\ $$$${looks}\:{like}: \\ $$

Commented by mr W last updated on 14/Nov/19

Commented by ajfour last updated on 14/Nov/19

Thanks Sir, SPLENDID solution!  (nice reverse swing !).

$${Thanks}\:{Sir},\:\mathcal{SPLENDID}\:{solution}! \\ $$$$\left({nice}\:{reverse}\:{swing}\:!\right). \\ $$

Commented by mr W last updated on 14/Nov/19

thanks for viewing sir! it′s a very  nice question!

$${thanks}\:{for}\:{viewing}\:{sir}!\:{it}'{s}\:{a}\:{very} \\ $$$${nice}\:{question}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com