Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 73538 by Rio Michael last updated on 13/Nov/19

find the general solution of    sin4x + cos2x = 0

findthegeneralsolutionofsin4x+cos2x=0

Answered by ajfour last updated on 13/Nov/19

cos 2x(2sin 2x+1)=0  ⇒  2x=(2n+1)(π/2)   or         2x=(4n−1)(π/2)±(π/3)  .

cos2x(2sin2x+1)=02x=(2n+1)π2or2x=(4n1)π2±π3.

Commented by Rio Michael last updated on 13/Nov/19

thanks sir

thankssir

Answered by malwaan last updated on 14/Nov/19

2sin2x cos2x + cos2x =0  cos2x(2sin2x+1)=0  cos2x=0⇒2x=(𝛑/2) + 2n𝛑         ⇒x=(𝛑/4) + n𝛑  or 2sin2x+1=0  ⇒2sin2x=−1⇒sin2x=−(1/2)  ⇒2x=((𝛑/6)+𝛑)+2n𝛑=((7𝛑)/6)+2n𝛑  ⇒x=((7𝛑)/(12)) + n𝛑  or 2x=(2𝛑−(𝛑/6))+2n𝛑           =((11𝛑)/6) +2n𝛑  ⇒x=((11𝛑)/(12)) + n𝛑  ⇒x={((𝛑/4)∨((7𝛑)/(12))∨((11𝛑)/(12)))+n𝛑}

2sin2xcos2x+cos2x=0cos2x(2sin2x+1)=0cos2x=02x=π2+2nπx=π4+nπor2sin2x+1=02sin2x=1sin2x=122x=(π6+π)+2nπ=7π6+2nπx=7π12+nπor2x=(2ππ6)+2nπ=11π6+2nπx=11π12+nπx={(π47π1211π12)+nπ}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com