All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 73538 by Rio Michael last updated on 13/Nov/19
findthegeneralsolutionofsin4x+cos2x=0
Answered by ajfour last updated on 13/Nov/19
cos2x(2sin2x+1)=0⇒2x=(2n+1)π2or2x=(4n−1)π2±π3.
Commented by Rio Michael last updated on 13/Nov/19
thankssir
Answered by malwaan last updated on 14/Nov/19
2sin2xcos2x+cos2x=0cos2x(2sin2x+1)=0cos2x=0⇒2x=π2+2nπ⇒x=π4+nπor2sin2x+1=0⇒2sin2x=−1⇒sin2x=−12⇒2x=(π6+π)+2nπ=7π6+2nπ⇒x=7π12+nπor2x=(2π−π6)+2nπ=11π6+2nπ⇒x=11π12+nπ⇒x={(π4∨7π12∨11π12)+nπ}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com