Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 73649 by aliesam last updated on 14/Nov/19

find the range    f(x)=(2/(6−(√(x+2))))

$${find}\:{the}\:{range} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{\mathrm{6}−\sqrt{{x}+\mathrm{2}}} \\ $$

Commented by mathmax by abdo last updated on 14/Nov/19

x ∈D_f ⇔ x≥−2  and (√(x+2))≠6 ⇔x≥−2 and x+2 ≠36 ⇔x≥−2  and x≠34  ⇒D_f =[−2,34[∪]34,+∞[  f^′ (x)=2(−((−(1/(2(√(x+2)))))/((6−(√(x+2)))^2 ))) =(1/((√(x+2))(6−(√(x+2)))^2 ))>0 ⇒f is increazing  on D_(f  )   we have f(−2)=(1/3) and  lim_(x→34^− ) f(x)   =+∞  lim_(x→34^+ )   f(x)=−∞ ⇒f([−2,34[)=[(1/3),+∞[ and  f(]34,+∞[) =]−∞,0[  variation of f  x                  −2                    34                           +∞  f^′                                  +         ∣∣                +  f                       (1/3)  inc +∞∣∣−∞      inc        0

$${x}\:\in{D}_{{f}} \Leftrightarrow\:{x}\geqslant−\mathrm{2}\:\:{and}\:\sqrt{{x}+\mathrm{2}}\neq\mathrm{6}\:\Leftrightarrow{x}\geqslant−\mathrm{2}\:{and}\:{x}+\mathrm{2}\:\neq\mathrm{36}\:\Leftrightarrow{x}\geqslant−\mathrm{2} \\ $$$${and}\:{x}\neq\mathrm{34}\:\:\Rightarrow{D}_{{f}} =\left[−\mathrm{2},\mathrm{34}\left[\cup\right]\mathrm{34},+\infty\left[\right.\right. \\ $$$${f}^{'} \left({x}\right)=\mathrm{2}\left(−\frac{−\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{2}}}}{\left(\mathrm{6}−\sqrt{{x}+\mathrm{2}}\right)^{\mathrm{2}} }\right)\:=\frac{\mathrm{1}}{\sqrt{{x}+\mathrm{2}}\left(\mathrm{6}−\sqrt{{x}+\mathrm{2}}\right)^{\mathrm{2}} }>\mathrm{0}\:\Rightarrow{f}\:{is}\:{increazing} \\ $$$${on}\:{D}_{{f}\:\:} \:\:{we}\:{have}\:{f}\left(−\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:{and}\:\:{lim}_{{x}\rightarrow\mathrm{34}^{−} } {f}\left({x}\right)\:\:\:=+\infty \\ $$$${lim}_{{x}\rightarrow\mathrm{34}^{+} } \:\:{f}\left({x}\right)=−\infty\:\Rightarrow{f}\left(\left[−\mathrm{2},\mathrm{34}\left[\right)=\left[\frac{\mathrm{1}}{\mathrm{3}},+\infty\left[\:{and}\right.\right.\right.\right. \\ $$$$\left.{f}\left(\right]\mathrm{34},+\infty\left[\right)\:=\right]−\infty,\mathrm{0}\left[\:\:{variation}\:{of}\:{f}\right. \\ $$$${x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{34}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\:\:\:\:\:\:\:\mid\mid\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${f}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{3}}\:\:{inc}\:+\infty\mid\mid−\infty\:\:\:\:\:\:{inc}\:\:\:\:\:\:\:\:\mathrm{0} \\ $$

Commented by malwaan last updated on 14/Nov/19

x≥−2 and x≠ 34  ⇒−2≤ x < 34 ∨ x > 34  −2≤ x < 34⇒0≤x+2<36  ⇒0≤(√(x+2)) <6⇒0≥−(√(x+2)) >−6  ⇒6≥6−(√(x+2)) >0  ⇒(1/3)≤ (2/(6−(√(x+2)))) < ∞  ⇒(1/3) ≤ y < ∞ ....(1)  x > 34⇒34<x<∞  ⇒36< x+2 < ∞  ⇒6<(√(x+2)) <∞  ⇒−6>−(√(x+2)) >−∞  ⇒0>6−(√(x+2)) >−∞  ⇒−∞<(2/(6−(√(x+2)))) < 0  ⇒−∞<y<0 ....(2)  from(1);(2)  ⇒the range =  [1 ╱ 3 ; ∞[ ∪ ]−∞ ; 0 [

$$\boldsymbol{{x}}\geqslant−\mathrm{2}\:\boldsymbol{{and}}\:\boldsymbol{{x}}\neq\:\mathrm{34} \\ $$$$\Rightarrow−\mathrm{2}\leqslant\:\boldsymbol{{x}}\:<\:\mathrm{34}\:\vee\:\boldsymbol{{x}}\:>\:\mathrm{34} \\ $$$$−\mathrm{2}\leqslant\:\boldsymbol{{x}}\:<\:\mathrm{34}\Rightarrow\mathrm{0}\leqslant\boldsymbol{{x}}+\mathrm{2}<\mathrm{36} \\ $$$$\Rightarrow\mathrm{0}\leqslant\sqrt{\boldsymbol{{x}}+\mathrm{2}}\:<\mathrm{6}\Rightarrow\mathrm{0}\geqslant−\sqrt{\boldsymbol{{x}}+\mathrm{2}}\:>−\mathrm{6} \\ $$$$\Rightarrow\mathrm{6}\geqslant\mathrm{6}−\sqrt{\boldsymbol{{x}}+\mathrm{2}}\:>\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}\leqslant\:\frac{\mathrm{2}}{\mathrm{6}−\sqrt{\boldsymbol{{x}}+\mathrm{2}}}\:<\:\infty \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}\:\leqslant\:\boldsymbol{{y}}\:<\:\infty\:....\left(\mathrm{1}\right) \\ $$$$\boldsymbol{{x}}\:>\:\mathrm{34}\Rightarrow\mathrm{34}<\boldsymbol{{x}}<\infty \\ $$$$\Rightarrow\mathrm{36}<\:\boldsymbol{{x}}+\mathrm{2}\:<\:\infty \\ $$$$\Rightarrow\mathrm{6}<\sqrt{\boldsymbol{{x}}+\mathrm{2}}\:<\infty \\ $$$$\Rightarrow−\mathrm{6}>−\sqrt{\boldsymbol{{x}}+\mathrm{2}}\:>−\infty \\ $$$$\Rightarrow\mathrm{0}>\mathrm{6}−\sqrt{\boldsymbol{{x}}+\mathrm{2}}\:>−\infty \\ $$$$\Rightarrow−\infty<\frac{\mathrm{2}}{\mathrm{6}−\sqrt{\boldsymbol{{x}}+\mathrm{2}}}\:<\:\mathrm{0} \\ $$$$\Rightarrow−\infty<\boldsymbol{{y}}<\mathrm{0}\:....\left(\mathrm{2}\right) \\ $$$$\boldsymbol{{from}}\left(\mathrm{1}\right);\left(\mathrm{2}\right) \\ $$$$\Rightarrow\boldsymbol{{the}}\:\boldsymbol{{range}}\:= \\ $$$$\left[\mathrm{1}\:\diagup\:\mathrm{3}\:;\:\infty\left[\:\cup\:\right]−\infty\:;\:\mathrm{0}\:\left[\right.\right. \\ $$

Answered by MJS last updated on 14/Nov/19

defined for x≥−2∧x≠34  f(−2)=(1/3)  lim_(x→34^− ) f(x)=+∞  lim_(x→34^+ ) f(x)=−∞  lim_(x→+∞) f(x)=0  ⇒ −∞<y≤0∨(1/3)≤y<+∞

$$\mathrm{defined}\:\mathrm{for}\:{x}\geqslant−\mathrm{2}\wedge{x}\neq\mathrm{34} \\ $$$${f}\left(−\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\underset{{x}\rightarrow\mathrm{34}^{−} } {\mathrm{lim}}{f}\left({x}\right)=+\infty \\ $$$$\underset{{x}\rightarrow\mathrm{34}^{+} } {\mathrm{lim}}{f}\left({x}\right)=−\infty \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{0} \\ $$$$\Rightarrow\:−\infty<{y}\leqslant\mathrm{0}\vee\frac{\mathrm{1}}{\mathrm{3}}\leqslant{y}<+\infty \\ $$

Commented by aliesam last updated on 14/Nov/19

god bless you sir

$${god}\:{bless}\:{you}\:{sir} \\ $$

Commented by aliesam last updated on 14/Nov/19

but i think that     −∞<y<0

$${but}\:{i}\:{think}\:{that}\: \\ $$$$ \\ $$$$−\infty<{y}<\mathrm{0} \\ $$

Commented by MJS last updated on 14/Nov/19

yes you are right, it′s a typo

$$\mathrm{yes}\:\mathrm{you}\:\mathrm{are}\:\mathrm{right},\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{typo} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com