Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 73663 by ajfour last updated on 14/Nov/19

Answered by ajfour last updated on 15/Nov/19

See Q.73673  V=2∫((((ρ^2 (2φ))/2)×(−ds))   ρ=ssin α=ssin (π/6) = (s/2)   s=((a(√3)−r(1−cos θ))/(cos α))=((2a)/3)(2+cos θ)   −ds= ((rsin θ)/(cos α)) = (((2a)/3))sin θdθ   φ=sin^(−1) {((rsin θcos α)/((a(√3)−r+rcos θ)sin α))}   V=−(1/2)∫s^2 φds      =(1/2)∫_0 ^(  π) [((2a(2+cos θ))/3)]^2 sin^(−1) {((rsin θcos α)/((a(√3)−r+rcos θ)sin α))}(((2a)/3))sin θdθ  V =((4a^3 )/(27))∫_(−1) ^(  1) (2+t)^2 sin^(−1) ((((√3)(√(1−t^2 )))/(2+t)))dt    =((4a^3 )/(27))×((((√3)π)/2)+((15)/4))≈((4a^3 )/(27))×6.4707   ( Q.73689′s  comment by MjS Sir     on how to evaluate the integral).  V_(cone) =((πa^3 )/(√3))    (V/V_(cone) ) = ((4(√3))/(27π))×6.4707 ≈ 0.5285               =((4(√3))/(27π))((((√3)π)/2)+((15)/4))      = ((2π+5(√3))/(9π)) .    ⇒  52.85% .

$${See}\:{Q}.\mathrm{73673} \\ $$$${V}=\mathrm{2}\int\left(\left(\frac{\rho^{\mathrm{2}} \left(\mathrm{2}\phi\right)}{\mathrm{2}}×\left(−{ds}\right)\right)\right. \\ $$$$\:\rho={s}\mathrm{sin}\:\alpha={s}\mathrm{sin}\:\frac{\pi}{\mathrm{6}}\:=\:\frac{{s}}{\mathrm{2}} \\ $$$$\:{s}=\frac{{a}\sqrt{\mathrm{3}}−{r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{cos}\:\alpha}=\frac{\mathrm{2}{a}}{\mathrm{3}}\left(\mathrm{2}+\mathrm{cos}\:\theta\right) \\ $$$$\:−{ds}=\:\frac{{r}\mathrm{sin}\:\theta}{\mathrm{cos}\:\alpha}\:=\:\left(\frac{\mathrm{2}{a}}{\mathrm{3}}\right)\mathrm{sin}\:\theta{d}\theta \\ $$$$\:\phi=\mathrm{sin}^{−\mathrm{1}} \left\{\frac{{r}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha}{\left({a}\sqrt{\mathrm{3}}−{r}+{r}\mathrm{cos}\:\theta\right)\mathrm{sin}\:\alpha}\right\} \\ $$$$\:{V}=−\frac{\mathrm{1}}{\mathrm{2}}\int{s}^{\mathrm{2}} \phi{ds} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\:\pi} \left[\frac{\mathrm{2}{a}\left(\mathrm{2}+\mathrm{cos}\:\theta\right)}{\mathrm{3}}\right]^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \left\{\frac{{r}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha}{\left({a}\sqrt{\mathrm{3}}−{r}+{r}\mathrm{cos}\:\theta\right)\mathrm{sin}\:\alpha}\right\}\left(\frac{\mathrm{2}{a}}{\mathrm{3}}\right)\mathrm{sin}\:\theta{d}\theta \\ $$$${V}\:=\frac{\mathrm{4}{a}^{\mathrm{3}} }{\mathrm{27}}\int_{−\mathrm{1}} ^{\:\:\mathrm{1}} \left(\mathrm{2}+{t}\right)^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{3}}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{2}+{t}}\right){dt} \\ $$$$\:\:=\frac{\mathrm{4}{a}^{\mathrm{3}} }{\mathrm{27}}×\left(\frac{\sqrt{\mathrm{3}}\pi}{\mathrm{2}}+\frac{\mathrm{15}}{\mathrm{4}}\right)\approx\frac{\mathrm{4}{a}^{\mathrm{3}} }{\mathrm{27}}×\mathrm{6}.\mathrm{4707} \\ $$$$\:\left(\:{Q}.\mathrm{73689}'{s}\:\:{comment}\:{by}\:{MjS}\:{Sir}\right. \\ $$$$\left.\:\:\:{on}\:{how}\:{to}\:{evaluate}\:{the}\:{integral}\right). \\ $$$${V}_{{cone}} =\frac{\pi{a}^{\mathrm{3}} }{\sqrt{\mathrm{3}}} \\ $$$$\:\:\frac{{V}}{{V}_{{cone}} }\:=\:\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{27}\pi}×\mathrm{6}.\mathrm{4707}\:\approx\:\mathrm{0}.\mathrm{5285} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{27}\pi}\left(\frac{\sqrt{\mathrm{3}}\pi}{\mathrm{2}}+\frac{\mathrm{15}}{\mathrm{4}}\right) \\ $$$$\:\:\:\:=\:\frac{\mathrm{2}\pi+\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{9}\pi}\:. \\ $$$$\:\:\Rightarrow\:\:\mathrm{52}.\mathrm{85\%}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com