Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 73673 by ajfour last updated on 14/Nov/19

Commented by ajfour last updated on 14/Nov/19

Q 73503   (another way  a try..)

$${Q}\:\mathrm{73503}\:\:\:\left({another}\:{way}\:\:{a}\:{try}..\right) \\ $$

Commented by ajfour last updated on 14/Nov/19

Commented by mind is power last updated on 15/Nov/19

we can use   parametric surface  if  f:IR^2 →IR^3    a surface   paramtric  f(u,v)=(a(u,v),b(u,v),c(u,v)) parametric  of surface  we will ginde parametrisation of ilimunated light  A(u)=∫∫_A  ∣(∂f/∂u)(u,v)∧(∂f/∂v)(u,v)∣dudv  i show steps  1 put repert  2,equation of semis disc ∴  D  ∵wich light pass throw    3,∀a∈D→a′∈A∩C   since light horizontal  C is Cone  D=(0,pcos(t),psin(t)),t∈[(π/2),((3π)/2)],p∈[0,(a/(√3))]  ⇒aa′^→ =s.i^→   i^→ =(1,0,0)  use C={(x,y,z)∈R^3 }∣x^2 +y^2 =z^2 tg^2 (θ)  we find s ther s (t,p)  a′(t,p) is our paramtrisation of A our f(u,v) below  i will poste it   this methode use somm topological object  surfaces

$${we}\:{can}\:{use}\:\:\:{parametric}\:{surface} \\ $$$${if}\:\:{f}:{IR}^{\mathrm{2}} \rightarrow{IR}^{\mathrm{3}} \:\:\:{a}\:{surface}\:\:\:{paramtric} \\ $$$${f}\left({u},{v}\right)=\left({a}\left({u},{v}\right),{b}\left({u},{v}\right),{c}\left({u},{v}\right)\right)\:{parametric}\:\:{of}\:{surface} \\ $$$${we}\:{will}\:{ginde}\:{parametrisation}\:{of}\:{ilimunated}\:{light} \\ $$$$\mathcal{A}\left({u}\right)=\int\int_{\mathcal{A}} \:\mid\frac{\partial{f}}{\partial{u}}\left({u},{v}\right)\wedge\frac{\partial{f}}{\partial{v}}\left({u},{v}\right)\mid{dudv} \\ $$$${i}\:{show}\:{steps} \\ $$$$\mathrm{1}\:{put}\:{repert} \\ $$$$\mathrm{2},{equation}\:{of}\:{semis}\:{disc}\:\therefore\:\:{D}\:\:\because{wich}\:{light}\:{pass}\:{throw} \\ $$$$ \\ $$$$\mathrm{3},\forall{a}\in{D}\rightarrow{a}'\in\mathcal{A}\cap{C}\:\:\:{since}\:{light}\:{horizontal} \\ $$$${C}\:{is}\:{Cone} \\ $$$${D}=\left(\mathrm{0},{pcos}\left({t}\right),{psin}\left({t}\right)\right),{t}\in\left[\frac{\pi}{\mathrm{2}},\frac{\mathrm{3}\pi}{\mathrm{2}}\right],{p}\in\left[\mathrm{0},\frac{{a}}{\sqrt{\mathrm{3}}}\right] \\ $$$$\Rightarrow{aa}\overset{\rightarrow} {'}={s}.\overset{\rightarrow} {{i}} \\ $$$$\overset{\rightarrow} {{i}}=\left(\mathrm{1},\mathrm{0},\mathrm{0}\right) \\ $$$${use}\:{C}=\left\{\left({x},{y},{z}\right)\in\mathbb{R}^{\mathrm{3}} \right\}\mid{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={z}^{\mathrm{2}} {tg}^{\mathrm{2}} \left(\theta\right) \\ $$$${we}\:{find}\:{s}\:{ther}\:{s}\:\left({t},{p}\right) \\ $$$${a}'\left({t},{p}\right)\:{is}\:{our}\:{paramtrisation}\:{of}\:\mathcal{A}\:{our}\:{f}\left({u},{v}\right)\:{below} \\ $$$${i}\:{will}\:{poste}\:{it}\:\:\:{this}\:{methode}\:{use}\:{somm}\:{topological}\:{object} \\ $$$${surfaces} \\ $$

Answered by ajfour last updated on 15/Nov/19

Let P  be a point on circumference  of circle  y^2 +(z−r)^2 =r^2   P (0, rsin θ, r−rcos θ)  Its shadow on slant surface of cone   S(ssin αcos φ, ssin αsin φ, a(√3)−scos α)  ⇒  ssin αsin φ=rsin θ       (α=30°)         a(√3)−scos α=r−rcos θ      s=((a(√3)−r(1−cos θ))/(cos α))     sin φ=((rsin θcos α)/((a(√3)−r+rcos θ)sin α))     sin φ=((sin θ)/((√3)−1+cos θ))    ds=((−rsin θdθ)/(cos α))    (s/(2a))=(ρ/a)  ⇒  ρ=(s/2)  A=∫ρ(2φ)(−ds) = ∫(s)(−ds)φ     =∫_0 ^(  π) (((a(√3)−r(1−cos θ))/(cos α)))(((rsin θdθ)/(cos α)))(sin^(−1) {((rsin θcos α)/((a(√3)−r+rcos θ)sin α))})  =((4a^2 )/3)∫_0 ^( π) [1−(1/3)(1−cos θ)][sin^(−1) (((sin θ)/((√3)−(1/(√3))+((cos θ)/(√3)))))]sin θdθ  =((4a^2 )/9)∫_(−1) ^( 1) (2+t)sin^(−1) ((((√3)(√(1−t^2 )))/(2+t)))dt    A=((4a^2 )/9)((π/(√3))+(3/2))≈1.4728a^2  .    A=((2a^2 (2π(√3)+9))/(27)) .  (see Q. 73689 on how to solve  the integral,special thanks to     MjS Sir)

$${Let}\:{P}\:\:{be}\:{a}\:{point}\:{on}\:{circumference} \\ $$$${of}\:{circle}\:\:{y}^{\mathrm{2}} +\left({z}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${P}\:\left(\mathrm{0},\:{r}\mathrm{sin}\:\theta,\:{r}−{r}\mathrm{cos}\:\theta\right) \\ $$$${Its}\:{shadow}\:{on}\:{slant}\:{surface}\:{of}\:{cone} \\ $$$$\:{S}\left({s}\mathrm{sin}\:\alpha\mathrm{cos}\:\phi,\:{s}\mathrm{sin}\:\alpha\mathrm{sin}\:\phi,\:{a}\sqrt{\mathrm{3}}−{s}\mathrm{cos}\:\alpha\right) \\ $$$$\Rightarrow\:\:{s}\mathrm{sin}\:\alpha\mathrm{sin}\:\phi={r}\mathrm{sin}\:\theta\:\:\:\:\:\:\:\left(\alpha=\mathrm{30}°\right) \\ $$$$\:\:\:\:\:\:\:{a}\sqrt{\mathrm{3}}−{s}\mathrm{cos}\:\alpha={r}−{r}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:{s}=\frac{{a}\sqrt{\mathrm{3}}−{r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{cos}\:\alpha} \\ $$$$\:\:\:\mathrm{sin}\:\phi=\frac{{r}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha}{\left({a}\sqrt{\mathrm{3}}−{r}+{r}\mathrm{cos}\:\theta\right)\mathrm{sin}\:\alpha} \\ $$$$\:\:\:\mathrm{sin}\:\phi=\frac{\mathrm{sin}\:\theta}{\sqrt{\mathrm{3}}−\mathrm{1}+\mathrm{cos}\:\theta} \\ $$$$\:\:{ds}=\frac{−{r}\mathrm{sin}\:\theta{d}\theta}{\mathrm{cos}\:\alpha} \\ $$$$\:\:\frac{{s}}{\mathrm{2}{a}}=\frac{\rho}{{a}}\:\:\Rightarrow\:\:\rho=\frac{{s}}{\mathrm{2}} \\ $$$${A}=\int\rho\left(\mathrm{2}\phi\right)\left(−{ds}\right)\:=\:\int\left({s}\right)\left(−{ds}\right)\phi \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\:\:\pi} \left(\frac{{a}\sqrt{\mathrm{3}}−{r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{cos}\:\alpha}\right)\left(\frac{{r}\mathrm{sin}\:\theta{d}\theta}{\mathrm{cos}\:\alpha}\right)\left(\mathrm{sin}^{−\mathrm{1}} \left\{\frac{{r}\mathrm{sin}\:\theta\mathrm{cos}\:\alpha}{\left({a}\sqrt{\mathrm{3}}−{r}+{r}\mathrm{cos}\:\theta\right)\mathrm{sin}\:\alpha}\right\}\right) \\ $$$$=\frac{\mathrm{4}{a}^{\mathrm{2}} }{\mathrm{3}}\int_{\mathrm{0}} ^{\:\pi} \left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\right]\left[\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\:\theta}{\sqrt{\mathrm{3}}−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}+\frac{\mathrm{cos}\:\theta}{\sqrt{\mathrm{3}}}}\right)\right]\mathrm{sin}\:\theta{d}\theta \\ $$$$=\frac{\mathrm{4}{a}^{\mathrm{2}} }{\mathrm{9}}\int_{−\mathrm{1}} ^{\:\mathrm{1}} \left(\mathrm{2}+{t}\right)\mathrm{sin}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{3}}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{2}+{t}}\right){dt} \\ $$$$\:\:{A}=\frac{\mathrm{4}{a}^{\mathrm{2}} }{\mathrm{9}}\left(\frac{\pi}{\sqrt{\mathrm{3}}}+\frac{\mathrm{3}}{\mathrm{2}}\right)\approx\mathrm{1}.\mathrm{4728}{a}^{\mathrm{2}} \:. \\ $$$$\:\:{A}=\frac{\mathrm{2}{a}^{\mathrm{2}} \left(\mathrm{2}\pi\sqrt{\mathrm{3}}+\mathrm{9}\right)}{\mathrm{27}}\:. \\ $$$$\left({see}\:{Q}.\:\mathrm{73689}\:{on}\:{how}\:{to}\:{solve}\right. \\ $$$${the}\:{integral},{special}\:{thanks}\:{to}\: \\ $$$$\left.\:\:{MjS}\:{Sir}\right) \\ $$

Commented by mr W last updated on 14/Nov/19

nice solution sir!

$${nice}\:{solution}\:{sir}! \\ $$

Answered by liki last updated on 14/Nov/19

Commented by ajfour last updated on 14/Nov/19

wrong place !

$${wrong}\:{place}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com