Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 73730 by TawaTawa last updated on 15/Nov/19

Answered by mind is power last updated on 15/Nov/19

f(x)=e^x −e^c −e^c (x−c)  ⇒f′(x)=e^x −e^c ⇒ { ((f(′x)≥0,∀x≥c)),((f′(x)≤0,∀x≤c)) :}  ⇒min f=f(c)=0⇒∀x∈R,f(x)≥0⇔e^x −e^c ≥e^c (x−c)  ∫_0 ^1 e^t^(R+1)  dt  we have for c=0⇒e^x −1≥1(x−1)⇔e^x ≥x,x=t^(R+2)   ⇒e^t^(R+2)  ≥t^(R+2)   ⇒∫_0 ^1 e^t^(R+2)  ≥∫_0 ^1 t^(R+2) =(1/(R+3))

$${f}\left({x}\right)={e}^{{x}} −{e}^{{c}} −{e}^{{c}} \left({x}−{c}\right) \\ $$$$\Rightarrow{f}'\left({x}\right)={e}^{{x}} −{e}^{{c}} \Rightarrow\begin{cases}{{f}\left('{x}\right)\geqslant\mathrm{0},\forall{x}\geqslant{c}}\\{{f}'\left({x}\right)\leqslant\mathrm{0},\forall{x}\leqslant{c}}\end{cases} \\ $$$$\Rightarrow{min}\:{f}={f}\left({c}\right)=\mathrm{0}\Rightarrow\forall{x}\in\mathbb{R},{f}\left({x}\right)\geqslant\mathrm{0}\Leftrightarrow{e}^{{x}} −{e}^{{c}} \geqslant{e}^{{c}} \left({x}−{c}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{t}^{{R}+\mathrm{1}} } {dt} \\ $$$${we}\:{have}\:{for}\:{c}=\mathrm{0}\Rightarrow{e}^{{x}} −\mathrm{1}\geqslant\mathrm{1}\left({x}−\mathrm{1}\right)\Leftrightarrow{e}^{{x}} \geqslant{x},{x}={t}^{{R}+\mathrm{2}} \\ $$$$\Rightarrow{e}^{{t}^{{R}+\mathrm{2}} } \geqslant{t}^{{R}+\mathrm{2}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{t}^{{R}+\mathrm{2}} } \geqslant\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{R}+\mathrm{2}} =\frac{\mathrm{1}}{{R}+\mathrm{3}} \\ $$

Commented by TawaTawa last updated on 15/Nov/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mind is power last updated on 15/Nov/19

y′re welcom sir

$${y}'{re}\:{welcom}\:{sir} \\ $$

Answered by mind is power last updated on 15/Nov/19

∫_0 ^1 e^t^(R+2)  dt≥e^(1/(R+3))   sorry my previous answer when i zoomed e did not appear  we use a(i) for x=t^(R+2) ,and c=(1/(R+3))  ⇒e^t^(R+2)  −e^(1/(R+3)) ≥e^(1/(R+3)) (t^(R+2) −(1/(R+3)))  ⇒∫_0 ^1 (e^t^(R+2)  −e^(1/(R+3)) )dt≥∫e^(1/(R+3)) (t^(R+2) −(1/(R+3)))dt=e^(1/(R+3)) ∫_0 ^1 (t^(R+2) −(1/(R+3)))dt=0  ⇒∫_0 ^1 (e^t^(R+2)  −e^(1/(R+3)) )dt≥0  ∫_0 ^1 (e^t^(R+2)  −e^(1/(R+3)) )dt=∫_0 ^1 e^t^(R+2)  dt−e^(1/(R+3)) ≥0⇒∫_0 ^1 e^t^(R+2)  ≥e^(1/(R+3))

$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{t}^{{R}+\mathrm{2}} } {dt}\geqslant{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \:\:{sorry}\:{my}\:{previous}\:{answer}\:{when}\:{i}\:{zoomed}\:{e}\:{did}\:{not}\:{appear} \\ $$$${we}\:{use}\:{a}\left({i}\right)\:{for}\:{x}={t}^{{R}+\mathrm{2}} ,{and}\:{c}=\frac{\mathrm{1}}{{R}+\mathrm{3}} \\ $$$$\Rightarrow{e}^{{t}^{{R}+\mathrm{2}} } −{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \geqslant{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \left({t}^{{R}+\mathrm{2}} −\frac{\mathrm{1}}{{R}+\mathrm{3}}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \left({e}^{{t}^{{R}+\mathrm{2}} } −{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \right){dt}\geqslant\int{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \left({t}^{{R}+\mathrm{2}} −\frac{\mathrm{1}}{{R}+\mathrm{3}}\right){dt}={e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \int_{\mathrm{0}} ^{\mathrm{1}} \left({t}^{{R}+\mathrm{2}} −\frac{\mathrm{1}}{{R}+\mathrm{3}}\right){dt}=\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \left({e}^{{t}^{{R}+\mathrm{2}} } −{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \right){dt}\geqslant\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left({e}^{{t}^{{R}+\mathrm{2}} } −{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \right){dt}=\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{t}^{{R}+\mathrm{2}} } {dt}−{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \geqslant\mathrm{0}\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{t}^{{R}+\mathrm{2}} } \geqslant{e}^{\frac{\mathrm{1}}{{R}+\mathrm{3}}} \\ $$$$ \\ $$$$ \\ $$

Commented by TawaTawa last updated on 15/Nov/19

Thanks for your time sir. God bless you.

$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Commented by mind is power last updated on 15/Nov/19

y′re welcom

$${y}'{re}\:{welcom} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com