Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 73789 by liki last updated on 15/Nov/19

Commented by liki last updated on 15/Nov/19

..Sory sir; Mr mind is power plz help     that qn 5 (a),(b),(c) and (d). or anyone   to assist me this qn

$$..{Sory}\:{sir};\:{Mr}\:{mind}\:{is}\:{power}\:{plz}\:{help}\: \\ $$$$\:\:{that}\:{qn}\:\mathrm{5}\:\left({a}\right),\left({b}\right),\left({c}\right)\:{and}\:\left({d}\right).\:{or}\:{anyone} \\ $$$$\:{to}\:{assist}\:{me}\:{this}\:{qn} \\ $$

Commented by mathmax by abdo last updated on 15/Nov/19

let find tan(arcsinx) with x∈[−1,1]  let arcsinx =t ⇒x =sint ⇒tan(arcsinx) =tant =((sint)/(cost))  =((sint)/(√(1−sin^2 t)))=(x/(√(1−x^2 ))) ⇒tan(arcsin((3/4)))=((3/4)/(√(1−((3/4))^2 )))  =(3/(4(√(1−(9/(16)))))) =(3/(√7))

$${let}\:{find}\:{tan}\left({arcsinx}\right)\:{with}\:{x}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${let}\:{arcsinx}\:={t}\:\Rightarrow{x}\:={sint}\:\Rightarrow{tan}\left({arcsinx}\right)\:={tant}\:=\frac{{sint}}{{cost}} \\ $$$$=\frac{{sint}}{\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {t}}}=\frac{{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\Rightarrow{tan}\left({arcsin}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right)=\frac{\frac{\mathrm{3}}{\mathrm{4}}}{\sqrt{\mathrm{1}−\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}\sqrt{\mathrm{1}−\frac{\mathrm{9}}{\mathrm{16}}}}\:=\frac{\mathrm{3}}{\sqrt{\mathrm{7}}} \\ $$

Commented by mathmax by abdo last updated on 15/Nov/19

b) let arcsinx =t   with −1≤x≤1  ⇒x=sint andcos(arcsinx)  =cos(t)=(√(1−sin^2 t))=(√(1−x^2 ))

$$\left.{b}\right)\:{let}\:{arcsinx}\:={t}\:\:\:{with}\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1}\:\:\Rightarrow{x}={sint}\:{andcos}\left({arcsinx}\right) \\ $$$$={cos}\left({t}\right)=\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {t}}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$

Commented by liki last updated on 16/Nov/19

...Thanks sir..

$$...{Thanks}\:{sir}.. \\ $$

Answered by mind is power last updated on 15/Nov/19

tan(x)=((sin(x))/(cos(x)))=((sin(x))/(√(1−sin^2 (x)))),  tan(sin^(−1) ((3/4)))=((3/4)/(√(1−(9/(16)))))=((3/4)/((√7)/4))=(3/(√7))  b)cos^2 (x)+sin^2 (x)=1⇒x=sin^− (t),sin(x)=t  ⇒cos^2 (t)+t^2 =1⇒cos(x)=(√(1−t^2 )),cause t∈[−(π/2),(π/2)]  cos (t)≥0  c{cot(θ)+cossec(θ)]^2 =(((cos(θ))/(sin(θ)))+(1/(sin(θ))))^2 =(((1+cos(θ))^2 )/(sin^2 (θ)))=A  sin^2 (θ)=(1−cos^2 (θ))=(1−cos(θ))(1+cos(θ))  A=(((1+cos(θ))^2 )/((1−cos(θ))(1+cos(θ))))=((1+cos(θ))/(1−cos(θ)))  d)8sin^2 (x)+2cos(x)−5=0  sin^2 (x)=1−cos^2 (x)⇒−8cos^2 (x)+2cos(x)+3=0  Δ=4+96=100  cos(x)=((−2−10)/(2.−8))=((12)/(16))=(3/4)  or cos(x)=((−2+10)/(2.−8))=(8/(−16))=−(1/2)  cos(x)=(3/4)⇒sin(x)=+_− (√(1−((3/4))^2 ))=+_− ((√7)/4)  ⇒tg(x)=+_− ((√7)/3)  cos(x)=−(1/2)⇒sin(x)=+_− (√(3/4))⇒tg(x)=+_− (√3)

$$\mathrm{tan}\left(\mathrm{x}\right)=\frac{\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{cos}\left(\mathrm{x}\right)}=\frac{\mathrm{sin}\left(\mathrm{x}\right)}{\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}}, \\ $$$$\mathrm{tan}\left(\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right)=\frac{\frac{\mathrm{3}}{\mathrm{4}}}{\sqrt{\mathrm{1}−\frac{\mathrm{9}}{\mathrm{16}}}}=\frac{\frac{\mathrm{3}}{\mathrm{4}}}{\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}}=\frac{\mathrm{3}}{\sqrt{\mathrm{7}}} \\ $$$$\left.\mathrm{b}\right)\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{1}\Rightarrow\mathrm{x}=\mathrm{sin}^{−} \left(\mathrm{t}\right),\mathrm{sin}\left(\mathrm{x}\right)=\mathrm{t} \\ $$$$\Rightarrow\mathrm{cos}^{\mathrm{2}} \left(\mathrm{t}\right)+\mathrm{t}^{\mathrm{2}} =\mathrm{1}\Rightarrow\mathrm{cos}\left(\mathrm{x}\right)=\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{2}} },\mathrm{cause}\:\mathrm{t}\in\left[−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right]\:\:\mathrm{cos}\:\left(\mathrm{t}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{c}\left\{\mathrm{cot}\left(\theta\right)+\mathrm{cossec}\left(\theta\right)\right]^{\mathrm{2}} =\left(\frac{\mathrm{cos}\left(\theta\right)}{\mathrm{sin}\left(\theta\right)}+\frac{\mathrm{1}}{\mathrm{sin}\left(\theta\right)}\right)^{\mathrm{2}} =\frac{\left(\mathrm{1}+\mathrm{cos}\left(\theta\right)\right)^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \left(\theta\right)}=\mathrm{A} \\ $$$$\mathrm{sin}^{\mathrm{2}} \left(\theta\right)=\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \left(\theta\right)\right)=\left(\mathrm{1}−\mathrm{cos}\left(\theta\right)\right)\left(\mathrm{1}+\mathrm{cos}\left(\theta\right)\right) \\ $$$$\mathrm{A}=\frac{\left(\mathrm{1}+\mathrm{cos}\left(\theta\right)\right)^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{cos}\left(\theta\right)\right)\left(\mathrm{1}+\mathrm{cos}\left(\theta\right)\right)}=\frac{\mathrm{1}+\mathrm{cos}\left(\theta\right)}{\mathrm{1}−\mathrm{cos}\left(\theta\right)} \\ $$$$\left.\mathrm{d}\right)\mathrm{8sin}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{2cos}\left(\mathrm{x}\right)−\mathrm{5}=\mathrm{0} \\ $$$$\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)\Rightarrow−\mathrm{8cos}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{2cos}\left(\mathrm{x}\right)+\mathrm{3}=\mathrm{0} \\ $$$$\Delta=\mathrm{4}+\mathrm{96}=\mathrm{100} \\ $$$$\mathrm{cos}\left(\mathrm{x}\right)=\frac{−\mathrm{2}−\mathrm{10}}{\mathrm{2}.−\mathrm{8}}=\frac{\mathrm{12}}{\mathrm{16}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{or}\:\mathrm{cos}\left(\mathrm{x}\right)=\frac{−\mathrm{2}+\mathrm{10}}{\mathrm{2}.−\mathrm{8}}=\frac{\mathrm{8}}{−\mathrm{16}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{cos}\left(\mathrm{x}\right)=\frac{\mathrm{3}}{\mathrm{4}}\Rightarrow\mathrm{sin}\left(\mathrm{x}\right)=\underset{−} {+}\sqrt{\mathrm{1}−\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }=\underset{−} {+}\frac{\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{tg}\left(\mathrm{x}\right)=\underset{−} {+}\frac{\sqrt{\mathrm{7}}}{\mathrm{3}} \\ $$$$\mathrm{cos}\left(\mathrm{x}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{sin}\left(\mathrm{x}\right)=\underset{−} {+}\sqrt{\frac{\mathrm{3}}{\mathrm{4}}}\Rightarrow\mathrm{tg}\left(\mathrm{x}\right)=\underset{−} {+}\sqrt{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$

Commented by liki last updated on 15/Nov/19

 GOD bless you sir..

$$\:{GOD}\:{bless}\:{you}\:{sir}.. \\ $$

Commented by mind is power last updated on 15/Nov/19

y′re welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$

Answered by Rio Michael last updated on 15/Nov/19

Q5 b) cos[sin^(−1) (x)] =(√(1−x^2 ))  LHS = cos[sin^(−1) x]   let sin^(−1) x = u ⇒ x = sinu  cosu = (√( 1−sin^2 u))  ⇒ cos[sin^(−1) x] = (√( 1−x^2 )) proved!

$$\left.{Q}\mathrm{5}\:{b}\right)\:{cos}\left[{sin}^{−\mathrm{1}} \left({x}\right)\right]\:=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${LHS}\:=\:{cos}\left[{sin}^{−\mathrm{1}} {x}\right]\: \\ $$$${let}\:{sin}^{−\mathrm{1}} {x}\:=\:{u}\:\Rightarrow\:{x}\:=\:{sinu} \\ $$$${cosu}\:=\:\sqrt{\:\mathrm{1}−{sin}^{\mathrm{2}} {u}} \\ $$$$\Rightarrow\:{cos}\left[{sin}^{−\mathrm{1}} {x}\right]\:=\:\sqrt{\:\mathrm{1}−{x}^{\mathrm{2}} }\:{proved}! \\ $$

Commented by liki last updated on 16/Nov/19

...Thanks alot sir..

$$...{Thanks}\:{alot}\:{sir}.. \\ $$

Answered by Rio Michael last updated on 15/Nov/19

tan[sin^(−1) ((3/4))]   let sin^(−1) ((3/4)) = u ⇒ (3/4) = sinu  ⇒tan[sin^(−1) ((3/4))] = α = tanu  tanu = ((sinu)/(cosu))            = ((sinu)/(√(1−sin^2 u)))          =  ((3/4)/(√(1−(9/(16)))))= (3/(√7))

$${tan}\left[{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right]\: \\ $$$${let}\:{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\:=\:{u}\:\Rightarrow\:\frac{\mathrm{3}}{\mathrm{4}}\:=\:{sinu} \\ $$$$\Rightarrow{tan}\left[{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right]\:=\:\alpha\:=\:{tanu} \\ $$$${tanu}\:=\:\frac{{sinu}}{{cosu}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\frac{{sinu}}{\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {u}}} \\ $$$$\:\:\:\:\:\:\:\:=\:\:\frac{\frac{\mathrm{3}}{\mathrm{4}}}{\sqrt{\mathrm{1}−\frac{\mathrm{9}}{\mathrm{16}}}}=\:\frac{\mathrm{3}}{\sqrt{\mathrm{7}}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com