Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73832 by FCB last updated on 16/Nov/19

Commented by FCB last updated on 16/Nov/19

solve

$$\boldsymbol{\mathrm{solve}} \\ $$

Commented by MJS last updated on 16/Nov/19

welcome back with another account!

$$\mathrm{welcome}\:\mathrm{back}\:\mathrm{with}\:\mathrm{another}\:\mathrm{account}! \\ $$

Commented by peter frank last updated on 16/Nov/19

please  sir mjs check working

$${please}\:\:{sir}\:{mjs}\:{check}\:{working} \\ $$$$ \\ $$

Commented by MJS last updated on 16/Nov/19

you went in one direction and then turned  around and now you′re from where you  started  (√(1+(1/u^4 )))=(√((u^4 +1)/u^4 ))=((√(u^4 +1))/u^2 )

$$\mathrm{you}\:\mathrm{went}\:\mathrm{in}\:\mathrm{one}\:\mathrm{direction}\:\mathrm{and}\:\mathrm{then}\:\mathrm{turned} \\ $$$$\mathrm{around}\:\mathrm{and}\:\mathrm{now}\:\mathrm{you}'\mathrm{re}\:\mathrm{from}\:\mathrm{where}\:\mathrm{you} \\ $$$$\mathrm{started} \\ $$$$\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{4}} }}=\sqrt{\frac{{u}^{\mathrm{4}} +\mathrm{1}}{{u}^{\mathrm{4}} }}=\frac{\sqrt{{u}^{\mathrm{4}} +\mathrm{1}}}{{u}^{\mathrm{2}} } \\ $$

Commented by peter frank last updated on 16/Nov/19

absolute true sir .please help  me

$${absolute}\:{true}\:{sir}\:.{please}\:{help}\:\:{me} \\ $$

Commented by FCB last updated on 16/Nov/19

????

$$???? \\ $$

Commented by MJS last updated on 16/Nov/19

it′s not possible to solve this integral using  basic calculus

$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{using} \\ $$$$\mathrm{basic}\:\mathrm{calculus} \\ $$

Answered by peter frank last updated on 16/Nov/19

x^2 =tan θ   x=(√(tan θ))  dx=((sec^2 dθ)/(2(√(tan θ))))  ∫((√(1+tan^2 ))/(tan θ))dx  ∫((√(1+tan^2 ))/(tan θ)).((sec^2 dθ)/(2(√(tan θ))))  ∫((sec θ)/(tan θ)).((sec^2 dθ)/(2(√(tan θ))))  (1/2)∫((sec θ)/(tan θ)).((sec^2 θdθ)/(√(tan θ)))  (1/2)∫((sec^3 θ)/(tan θ(√(tan θ))))dθ  u=(√(tan θ))     u^2 =tan θ  dθ=((2u)/(sec^2 θ))du  (1/2)∫((sec ^3 θ)/(u^2 .u)).((2u)/(sec^2 θ))  ∫((sec  θ)/u^2 )  ∫((√(1+tan^2 θ))/u^2 )  ∫(√((1+u^4 )/u^4 ))  ∫(√(1+(1/u^4 )))  ........

$${x}^{\mathrm{2}} =\mathrm{tan}\:\theta\:\:\:{x}=\sqrt{\mathrm{tan}\:\theta} \\ $$$${dx}=\frac{\mathrm{sec}\:^{\mathrm{2}} {d}\theta}{\mathrm{2}\sqrt{\mathrm{tan}\:\theta}} \\ $$$$\int\frac{\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} }}{\mathrm{tan}\:\theta}{dx} \\ $$$$\int\frac{\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} }}{\mathrm{tan}\:\theta}.\frac{\mathrm{sec}\:^{\mathrm{2}} {d}\theta}{\mathrm{2}\sqrt{\mathrm{tan}\:\theta}} \\ $$$$\int\frac{\mathrm{sec}\:\theta}{\mathrm{tan}\:\theta}.\frac{\mathrm{sec}\:^{\mathrm{2}} {d}\theta}{\mathrm{2}\sqrt{\mathrm{tan}\:\theta}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{sec}\:\theta}{\mathrm{tan}\:\theta}.\frac{\mathrm{sec}\:^{\mathrm{2}} \theta{d}\theta}{\sqrt{\mathrm{tan}\:\theta}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{sec}\:^{\mathrm{3}} \theta}{\mathrm{tan}\:\theta\sqrt{\mathrm{tan}\:\theta}}{d}\theta \\ $$$${u}=\sqrt{\mathrm{tan}\:\theta}\:\:\:\:\:{u}^{\mathrm{2}} =\mathrm{tan}\:\theta \\ $$$${d}\theta=\frac{\mathrm{2}{u}}{\mathrm{sec}\:^{\mathrm{2}} \theta}{du} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{sec}\:\:^{\mathrm{3}} \theta}{{u}^{\mathrm{2}} .{u}}.\frac{\mathrm{2}{u}}{\mathrm{sec}\:^{\mathrm{2}} \theta} \\ $$$$\int\frac{\mathrm{sec}\:\:\theta}{{u}^{\mathrm{2}} } \\ $$$$\int\frac{\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \theta}}{{u}^{\mathrm{2}} } \\ $$$$\int\sqrt{\frac{\mathrm{1}+{u}^{\mathrm{4}} }{{u}^{\mathrm{4}} }} \\ $$$$\int\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{4}} }} \\ $$$$........ \\ $$

Commented by FCB last updated on 16/Nov/19

Commented by FCB last updated on 16/Nov/19

prove that

$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}} \\ $$

Commented by FCB last updated on 16/Nov/19

Commented by FCB last updated on 16/Nov/19

sir peter frank ?

$$\mathrm{sir}\:\mathrm{peter}\:\mathrm{frank}\:? \\ $$

Commented by peter frank last updated on 16/Nov/19

yes it is mistake.I have  rectified please check now

$${yes}\:{it}\:{is}\:{mistake}.{I}\:{have} \\ $$$${rectified}\:{please}\:{check}\:{now} \\ $$

Commented by mind is power last updated on 16/Nov/19

∫((√(1+x^4 ))/x^2 )dx=((−(√(1+x^4 )))/x)+∫((2x^3 )/(x(√(1+x^4 ))))dx  we  devloppe  ∫((2x^2 )/(√(1+x^4 )))dx  x=e^(i(π/4)) .sh(t)⇒dx=e^(i(π/4)) ch(t)  ⇒∫_0 ^x ((2x^2 dx)/(√(1+x^4 )))=2e^(i(π/4)) ∫_0 ^(sh^− (xe^(−((iπ)/4)) )) .((ish^2 (t)ch(t))/(√(1−sh^4 (t))))  =2ie^(i(π/4)) ∫_0 ^(sh^− (xe^(−((iπ)/4)) )) ((sh^2 (t)ch(t))/(√((1−sh^2 (t))(1+sh^2 (t)))))dt  =2ie^(i(π/4)) ∫_0 ^(sh^− (xe^(−((iπ)/4)) )) ((sh^2 (t)ch(t))/((√(1−sh^2 (t))).ch(t)))dt  2ie^(i(π/4)) ∫_0 ^(sh^− (xe^(−((iπ)/4)) )) ((sh^2 (t))/((√(1−sh^2 (t))).))dt  t=is  sh(is)=isin(s)  ⇔−2e^(i(π/4)) ∫_0 ^(−ish^− (xe^(−((iπ)/4)) )) ((sin^2 (t))/(√(1+sin^2 (t))))  ⇔−2e^(i(π/4)) ∫_0 ^(−ish^− (xe^(−((iπ)/4)) )) ((sin^2 (t)+1−1)/(√(1+sin^2 (t))))  ⇔−2e^(i(π/4)) ∫_0 ^(−ish^− (xe^(−((iπ)/4)) )) (√(1−(i)^2 sin^2 (t)))−2(−e^(i(π/4)) )∫_0 ^(−ish^− (xe^(−((iπ)/4)) )) (dt/(√(1−(i)^2 sin^2 (t))))  E(θ⌋k^2 )=∫_0 ^θ (dϕ/(√(1−k^2 sin^2 (ϕ)))),2nd eleptic  function  F(θ]k^2 )=∫_0 ^θ (√(1−(k^2 )sin^2 (ϕ)))dϕ  so we get  −2e^(i(π/4)) F(−ish^− (xe^(i(π/4)) )∣−1)−(−2e^(i(π/4)) )E(−ish(xe^(i(π/4)) )∣−1)  to finish e^(i(π/4)) =(−1)^(1/4)   ∫((√(1+x^4 ))/x^2 )dx=((−(√(1+x^4 )))/x)+∫((2x^3 )/(x(√(1+x^4 ))))dx  −((√(1+x^4 ))/x)=−(1/(x(√(1+x^4 ))))−(x^3 /(√(1+x^4 )))  we get the answer

$$\int\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\frac{−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}}+\int\frac{\mathrm{2x}^{\mathrm{3}} }{\mathrm{x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}\mathrm{dx} \\ $$$$\mathrm{we}\:\:\mathrm{devloppe} \\ $$$$\int\frac{\mathrm{2x}^{\mathrm{2}} }{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}\mathrm{dx} \\ $$$$\mathrm{x}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} .\mathrm{sh}\left(\mathrm{t}\right)\Rightarrow\mathrm{dx}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \mathrm{ch}\left(\mathrm{t}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{x}} \frac{\mathrm{2x}^{\mathrm{2}} \mathrm{dx}}{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}=\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{\mathrm{sh}^{−} \left(\mathrm{xe}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} .\frac{\mathrm{ish}^{\mathrm{2}} \left(\mathrm{t}\right)\mathrm{ch}\left(\mathrm{t}\right)}{\sqrt{\mathrm{1}−\mathrm{sh}^{\mathrm{4}} \left(\mathrm{t}\right)}} \\ $$$$=\mathrm{2ie}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{\mathrm{sh}^{−} \left(\mathrm{xe}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} \frac{\mathrm{sh}^{\mathrm{2}} \left(\mathrm{t}\right)\mathrm{ch}\left(\mathrm{t}\right)}{\sqrt{\left(\mathrm{1}−\mathrm{sh}^{\mathrm{2}} \left(\mathrm{t}\right)\right)\left(\mathrm{1}+\mathrm{sh}^{\mathrm{2}} \left(\mathrm{t}\right)\right)}}\mathrm{dt} \\ $$$$=\mathrm{2ie}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{\mathrm{sh}^{−} \left(\mathrm{xe}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} \frac{\mathrm{sh}^{\mathrm{2}} \left(\mathrm{t}\right)\mathrm{ch}\left(\mathrm{t}\right)}{\sqrt{\mathrm{1}−\mathrm{sh}^{\mathrm{2}} \left(\mathrm{t}\right)}.\mathrm{ch}\left(\mathrm{t}\right)}\mathrm{dt} \\ $$$$\mathrm{2ie}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{\mathrm{sh}^{−} \left(\mathrm{xe}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} \frac{\mathrm{sh}^{\mathrm{2}} \left(\mathrm{t}\right)}{\sqrt{\mathrm{1}−\mathrm{sh}^{\mathrm{2}} \left(\mathrm{t}\right)}.}\mathrm{dt} \\ $$$$\mathrm{t}=\mathrm{is} \\ $$$$\mathrm{sh}\left(\mathrm{is}\right)=\mathrm{isin}\left(\mathrm{s}\right) \\ $$$$\Leftrightarrow−\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{−\mathrm{ish}^{−} \left(\mathrm{xe}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} \frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)}{\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)}} \\ $$$$\Leftrightarrow−\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{−\mathrm{ish}^{−} \left(\mathrm{xe}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} \frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)+\mathrm{1}−\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)}} \\ $$$$\Leftrightarrow−\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{−\mathrm{ish}^{−} \left(\mathrm{xe}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} \sqrt{\mathrm{1}−\left(\mathrm{i}\right)^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)}−\mathrm{2}\left(−\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)\int_{\mathrm{0}} ^{−\mathrm{ish}^{−} \left(\mathrm{xe}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} \frac{\mathrm{dt}}{\sqrt{\mathrm{1}−\left(\mathrm{i}\right)^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)}} \\ $$$$\mathrm{E}\left(\theta\rfloor\mathrm{k}^{\mathrm{2}} \right)=\int_{\mathrm{0}} ^{\theta} \frac{\mathrm{d}\varphi}{\sqrt{\mathrm{1}−\mathrm{k}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\varphi\right)}},\mathrm{2nd}\:\mathrm{eleptic}\:\:\mathrm{function} \\ $$$$\left.\mathrm{F}\left(\theta\right]\mathrm{k}^{\mathrm{2}} \right)=\int_{\mathrm{0}} ^{\theta} \sqrt{\mathrm{1}−\left(\mathrm{k}^{\mathrm{2}} \right)\mathrm{sin}^{\mathrm{2}} \left(\varphi\right)}\mathrm{d}\varphi \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{get} \\ $$$$−\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \mathrm{F}\left(−\mathrm{ish}^{−} \left(\mathrm{xe}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)\mid−\mathrm{1}\right)−\left(−\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)\mathrm{E}\left(−\mathrm{ish}\left(\mathrm{xe}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)\mid−\mathrm{1}\right) \\ $$$$\mathrm{to}\:\mathrm{finish}\:\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} =\left(−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\int\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\frac{−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}}+\int\frac{\mathrm{2x}^{\mathrm{3}} }{\mathrm{x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}\mathrm{dx} \\ $$$$−\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}}=−\frac{\mathrm{1}}{\mathrm{x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }}−\frac{\mathrm{x}^{\mathrm{3}} }{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{answer} \\ $$$$ \\ $$$$ \\ $$

Commented by MJS last updated on 17/Nov/19

yes; thank you

$$\mathrm{yes};\:\mathrm{thank}\:\mathrm{you} \\ $$

Commented by mind is power last updated on 17/Nov/19

y′re welcom sir

$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom}\:\mathrm{sir} \\ $$

Commented by FCB last updated on 17/Nov/19

great!

$$\mathrm{great}! \\ $$

Answered by Tanmay chaudhury last updated on 17/Nov/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com