Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 7399 by Tawakalitu. last updated on 27/Aug/16

In an AP , if the m^(th)  term is n and the n^(th)  term  is m. where m is not equal to n. find  (1) The value of (m + n)^(th)  term  (2) The p^(th)  term.

$${In}\:{an}\:{AP}\:,\:{if}\:{the}\:{m}^{{th}} \:{term}\:{is}\:{n}\:{and}\:{the}\:{n}^{{th}} \:{term} \\ $$$${is}\:{m}.\:{where}\:{m}\:{is}\:{not}\:{equal}\:{to}\:{n}.\:{find} \\ $$$$\left(\mathrm{1}\right)\:{The}\:{value}\:{of}\:\left({m}\:+\:{n}\right)^{{th}} \:{term} \\ $$$$\left(\mathrm{2}\right)\:{The}\:{p}^{{th}} \:{term}. \\ $$

Answered by Yozzia last updated on 27/Aug/16

For an AP, the k^(th)  term u(k) is given by  u(k)=u(1)+(k−1)d where d is a constant.  ∴ k=m⇒u(m)=u(1)+(m−1)d=n  and k=n⇒u(n)=u(1)+(n−1)d=m    (1) k=m+n⇒u(m+n)=u(1)+(m+n−1)d  But, n−m=(m−n)d  and m≠n⇒d=−1  ∴u(m+n)=u(1)+(m+n−1)(−1)  but, n+m=2u(1)+(−1)(m+n−2)  2(m+n)=2u(1)+2  u(1)=m+n−1  ∴ u(m+n)=m+n−1+(−1)(m+n−1)=0    (2) k=p⇒ u(p)=m+n−1+(p−1)(−1)=m+n−p

$${For}\:{an}\:{AP},\:{the}\:{k}^{{th}} \:{term}\:{u}\left({k}\right)\:{is}\:{given}\:{by} \\ $$$${u}\left({k}\right)={u}\left(\mathrm{1}\right)+\left({k}−\mathrm{1}\right){d}\:{where}\:{d}\:{is}\:{a}\:{constant}. \\ $$$$\therefore\:{k}={m}\Rightarrow{u}\left({m}\right)={u}\left(\mathrm{1}\right)+\left({m}−\mathrm{1}\right){d}={n} \\ $$$${and}\:{k}={n}\Rightarrow{u}\left({n}\right)={u}\left(\mathrm{1}\right)+\left({n}−\mathrm{1}\right){d}={m} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:{k}={m}+{n}\Rightarrow{u}\left({m}+{n}\right)={u}\left(\mathrm{1}\right)+\left({m}+{n}−\mathrm{1}\right){d} \\ $$$${But},\:{n}−{m}=\left({m}−{n}\right){d}\:\:{and}\:{m}\neq{n}\Rightarrow{d}=−\mathrm{1} \\ $$$$\therefore{u}\left({m}+{n}\right)={u}\left(\mathrm{1}\right)+\left({m}+{n}−\mathrm{1}\right)\left(−\mathrm{1}\right) \\ $$$${but},\:{n}+{m}=\mathrm{2}{u}\left(\mathrm{1}\right)+\left(−\mathrm{1}\right)\left({m}+{n}−\mathrm{2}\right) \\ $$$$\mathrm{2}\left({m}+{n}\right)=\mathrm{2}{u}\left(\mathrm{1}\right)+\mathrm{2} \\ $$$${u}\left(\mathrm{1}\right)={m}+{n}−\mathrm{1} \\ $$$$\therefore\:{u}\left({m}+{n}\right)={m}+{n}−\mathrm{1}+\left(−\mathrm{1}\right)\left({m}+{n}−\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{k}={p}\Rightarrow\:{u}\left({p}\right)={m}+{n}−\mathrm{1}+\left({p}−\mathrm{1}\right)\left(−\mathrm{1}\right)={m}+{n}−{p} \\ $$

Commented by Rasheed Soomro last updated on 27/Aug/16

Another way  From the above  d=−1  u(1)+(m−1)d=n  adding nd to both sides  u(1)+(m−1)d+nd=n+nd  u(1)+(m+n−1)d=n+n(−1)  u(1)+(m+n−1)d=0  u(m+n)=0    u(1)+(m−1)d=n  Subtracting (m−p)d to both sides  u(1)+(m−1)d−(m−p)d=n−(m−p)d  u(1)+(m−1−m+p)d=n−(m−p)(−1)  u(1)+(p−1)d=n+m−p  u(p)=m+n−p

$${Another}\:{way} \\ $$$${From}\:{the}\:{above}\:\:{d}=−\mathrm{1} \\ $$$${u}\left(\mathrm{1}\right)+\left({m}−\mathrm{1}\right){d}={n} \\ $$$${adding}\:{nd}\:{to}\:{both}\:{sides} \\ $$$${u}\left(\mathrm{1}\right)+\left({m}−\mathrm{1}\right){d}+{nd}={n}+{nd} \\ $$$${u}\left(\mathrm{1}\right)+\left({m}+{n}−\mathrm{1}\right){d}={n}+{n}\left(−\mathrm{1}\right) \\ $$$${u}\left(\mathrm{1}\right)+\left({m}+{n}−\mathrm{1}\right){d}=\mathrm{0} \\ $$$${u}\left({m}+{n}\right)=\mathrm{0} \\ $$$$ \\ $$$${u}\left(\mathrm{1}\right)+\left({m}−\mathrm{1}\right){d}={n} \\ $$$${Subtracting}\:\left({m}−{p}\right){d}\:{to}\:{both}\:{sides} \\ $$$${u}\left(\mathrm{1}\right)+\left({m}−\mathrm{1}\right){d}−\left({m}−{p}\right){d}={n}−\left({m}−{p}\right){d} \\ $$$${u}\left(\mathrm{1}\right)+\left({m}−\mathrm{1}−{m}+{p}\right){d}={n}−\left({m}−{p}\right)\left(−\mathrm{1}\right) \\ $$$${u}\left(\mathrm{1}\right)+\left({p}−\mathrm{1}\right){d}={n}+{m}−{p} \\ $$$${u}\left({p}\right)={m}+{n}−{p} \\ $$

Commented by Tawakalitu. last updated on 27/Aug/16

Thank you sir. i really appreciate

$${Thank}\:{you}\:{sir}.\:{i}\:{really}\:{appreciate} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com