Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74013 by mathmax by abdo last updated on 17/Nov/19

let   P(x)= Σ_(0≤i<j≤n)  x^(i+j)   1) calculate P^′ (x)  2) find ∫_0 ^1  P(x)dx

letP(x)=0i<jnxi+j 1)calculateP(x) 2)find01P(x)dx

Commented byabdomathmax last updated on 18/Nov/19

1) we have (Σ_(i=0) ^n x^i )^2 =Σ_(i=0) ^n  x^(2i)  +Σ_(0≤i<j≤n)   x^(i+j)   ⇒P(x)=(Σ_(i=0) ^(n ) x^i )^2  −Σ_(i=0) ^n  x^(2i)   case 1  x≠1 ⇒P(x)=(((1−x^(n+1) )/(1−x)))^2 −((x^(2n+2) −1)/(x^2 −1))  ⇒P^′ (x)=2(((x^(n+1) −1)/(x−1)))^′ (((x^(n+1) −1)/(x−1)))  −(((2n+2)x^(2n+1) (x^2 −1)−2x(x^(2n+2) −1))/((x^2 −1)^2 ))  =2((x^(n+1) −1)/(x−1))×(((n+1)x^n (x−1)−(x^(n+1) −1))/((x−1)^2 ))  −(((2n+2)x^(2n+3) −(2n+2)x^(2n+2) −2x^(2n+3)  +1)/((x^2 −1)^2 ))  =2((x^(n+1) −1)/((x−1)^3 ))( nx^(n+1) −(n+1)x^n +1)  −((2n x^(3n+3) −(2n+2)x^(2n+2) +1)/((x^2 −1)^2 ))  case 2  x=1 ⇒P(x)=P(1)=(n+1)^2 −(n+1)  =n^2 +2n+1−n−1 =n^2  +n

1)wehave(i=0nxi)2=i=0nx2i+0i<jnxi+j P(x)=(i=0nxi)2i=0nx2i case1x1P(x)=(1xn+11x)2x2n+21x21 P(x)=2(xn+11x1)(xn+11x1) (2n+2)x2n+1(x21)2x(x2n+21)(x21)2 =2xn+11x1×(n+1)xn(x1)(xn+11)(x1)2 (2n+2)x2n+3(2n+2)x2n+22x2n+3+1(x21)2 =2xn+11(x1)3(nxn+1(n+1)xn+1) 2nx3n+3(2n+2)x2n+2+1(x21)2 case2x=1P(x)=P(1)=(n+1)2(n+1) =n2+2n+1n1=n2+n

Commented byabdomathmax last updated on 18/Nov/19

error of typo for x≠1  P^′ (x)=(((2x^(n+1) −2)(nx^(n+1) −(n+1)x^n +1))/((x−1)^3 ))  −((2nx^(2n+3)  −(2n+2)x^(2n+2) +1)/((x^2 −1)^2 ))

erroroftypoforx1 P(x)=(2xn+12)(nxn+1(n+1)xn+1)(x1)3 2nx2n+3(2n+2)x2n+2+1(x21)2

Commented byabdomathmax last updated on 18/Nov/19

2) ∫_0 ^1 P(x)dx =Σ_(0≤i<j≤n)     ∫_0 ^1  x^(i+j) dx  =Σ_(0≤i<j≤n)    (1/(i+j+1))  =Σ_(j=1) ^n (Σ_(i=0) ^(j−1)   (1/(i+j+1))) changement of indice  i+j+1=k give   ∫_0 ^1  P(x)dx =Σ_(j=1) ^n (Σ_(k=j+1) ^(2j)  (1/k))  =Σ_(j=1) ^n (Σ_(k=1) ^j (1/k) +Σ_(k=j+1) ^(2j)  (1/k)  −Σ_(k=1) ^j  (1/k))  =Σ_(j=1) ^n ( H_(2j) −H_j ) =Σ_(j=1) ^n  H_(2j) −Σ_(n=1) ^n  H_j

2)01P(x)dx=0i<jn01xi+jdx =0i<jn1i+j+1 =j=1n(i=0j11i+j+1)changementofindice i+j+1=kgive 01P(x)dx=j=1n(k=j+12j1k) =j=1n(k=1j1k+k=j+12j1kk=1j1k) =j=1n(H2jHj)=j=1nH2jn=1nHj

Answered by mind is power last updated on 18/Nov/19

let Q(x)=(Σ_(i=0) ^n x^i )  Q(x)^2 =2p(x)+Σ_(i=1) ^n x^(2i) =2p(x)  Q(x)=(((1−x^(n+1) )/(1−x)))^2 ,∀x∈C−{1}  ⇒p(x)=(1/2)[(((1−x^(n+1) )/(1−x)))^2 −((1−x^(2n+2) )/(1−x^2 ))],∀x∈C−{1,−1}  =p(x)=(1/2)[(((x^(2n+2) +1−2x^(n+1) )(1+x)−(1−x^(2n+2) )(1−x))/((1−x^2 )(1−x)))]  ⇒p(x)=(1/2)[((x^(2n+3) +x−2x^(n+2) +x^(2n+2) +1−2x^(n+1) −1+x+x^(2n+2) −x^(2n+3) )/((1−x^2 )(1−x)))]  ⇒p(x)=(1/2)[((2x^(2n+2) −2x^(n+2) −2x^(n+1) +2x)/((1−x^2 )(1−x)))]  p(x)=((x^(2n+2) −x^(n+2) −x^(n+1) +x)/((1−x^2 )(1−x)))  p′(x)=Σ_(1≤i<j≤n) (i+j)x^(i+j−1) =p′(x),x∈C−{1,−1}  if x=1⇒p′(x)=Σ_(1≤i<j≤n) (i+j)  =Σ_(2≤j≤n) Σ_(i=1) ^(j−1) (i+j)  =Σ_(2≤j≤n) .{(((1+j+2j−1))/2).(j−1)  =Σ_(2≤j≤n) (3/2)(j^2 −j)=(3/2).Σ_(2≤j≤n)  j^2 −(3/2).((n−1)/2).(((n+2))/)  =(3/2)[{.((n(n+1)(2n+1))/6)−(1/6)}−(((n−1)(n+2))/2)  2)∫_0 ^1 P(x)=Σ_(0≤i<j≤n) (1/(i+j+1))  =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) .(1/(i+j+1))  =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) .((1/(i+j+1))+Σ_(k=1) ^(j+i) (1/k)−Σ_(k=1) ^(j+i) (1/k))  =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) {H_(2j) −H_(j+i) }  =Σ_(j=1) ^n jH_(2j) −Σ_(j=1) ^n Σ_(i=0) ^(j−1) H_(i+j)

letQ(x)=(ni=0xi) Q(x)2=2p(x)+ni=1x2i=2p(x) Q(x)=(1xn+11x)2,xC{1} p(x)=12[(1xn+11x)21x2n+21x2],xC{1,1} =p(x)=12[(x2n+2+12xn+1)(1+x)(1x2n+2)(1x)(1x2)(1x)] p(x)=12[x2n+3+x2xn+2+x2n+2+12xn+11+x+x2n+2x2n+3(1x2)(1x)] p(x)=12[2x2n+22xn+22xn+1+2x(1x2)(1x)] p(x)=x2n+2xn+2xn+1+x(1x2)(1x) p(x)=1i<jn(i+j)xi+j1=p(x),xC{1,1} ifx=1p(x)=1i<jn(i+j) =2jnj1i=1(i+j) =2jn.{(1+j+2j1)2.(j1) =2jn32(j2j)=32.2jnj232.n12.(n+2) =32[{.n(n+1)(2n+1)616}(n1)(n+2)2 2)01P(x)=0i<jn1i+j+1 =nj=1.j1i=0.1i+j+1 =nj=1.j1i=0.(1i+j+1+j+ik=11kj+ik=11k) =nj=1.j1i=0{H2jHj+i} =nj=1jH2jnj=1j1i=0Hi+j

Commented byabdomathmax last updated on 18/Nov/19

thank you sir ...

thankyousir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com