All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 74014 by mathmax by abdo last updated on 17/Nov/19
letW(x)=∑1⩽i<j⩽nxi+jij calculateW′(x).
Commented bymathmax by abdo last updated on 19/Nov/19
wehave(∑i=1nxii)2=∑i=1nx2ii2+∑1⩽i<j⩽nxi+jij⇒ W(x)=(∑i=1nxii)2−∑i=1nx2ii2⇒ W′(x)=2(∑i=1nxii)′(∑i=1nxii)−∑i=1n2ix2i−1i2 =2(∑i=1nxi−1)(∑i=1nxii)−2∑i=1nx2i−1iwehave ∑i=1nxi−1=∑i=0n−1xi=1−xn1−xifx≠1and∑i=1nxi−1=nifx=1 letf(x)=∑i=1nxii⇒f′(x)=∑i=1nxi−1=1−xn1−x(ifx≠1) f(x)=∫0x1−tn1−tdt+c(c=f(0)=0)⇒f(x)=∫0x1−tn1−tdt =∫0xdt1−t−∫0xtn1−tdt=−ln∣1−x∣−∫0xtn1−tdt x=1⇒f(x)=∑i=1n1i=Hnalso ∑i=1nx2i−1i=1x∑i=1n(x2)ii=1xf(x2)=1x(−ln∣1−x2∣−∫0x2tn1−tdt) =−1x(ln∣1−x2∣+∫0x2tn1−tdt)(x≠1)soforx≠1 W′(x)=2(xn−1x−1)(ln∣1−x∣+∫0xtn1−tdt)+2x(ln∣1−x2∣+∫0x2tn1−tdt)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com