Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74014 by mathmax by abdo last updated on 17/Nov/19

      let W(x)=Σ_(1≤i<j≤n)   (x^(i+j) /(ij))  calculate W^′ (x).

letW(x)=1i<jnxi+jij calculateW(x).

Commented bymathmax by abdo last updated on 19/Nov/19

we have (Σ_(i=1) ^n  (x^i /i))^2  =Σ_(i=1) ^n  (x^(2i) /i^2 ) +Σ_(1≤i<j≤n)   (x^(i+j) /(ij)) ⇒  W(x)=(Σ_(i=1) ^n  (x^i /i))^2 −Σ_(i=1) ^n  (x^(2i) /i^2 ) ⇒  W^′ (x)=2(Σ_(i=1) ^n  (x^i /i))^′ (Σ_(i=1) ^n  (x^i /i))−Σ_(i=1) ^n ((2i x^(2i−1) )/i^2 )  =2(Σ_(i=1) ^n  x^(i−1) )(Σ_(i=1) ^n  (x^i /i))−2 Σ_(i=1) ^n  (x^(2i−1) /i)  we have  Σ_(i=1) ^n  x^(i−1) =Σ_(i=0) ^(n−1)  x^i   =((1−x^n )/(1−x))  if x≠1  and Σ_(i=1) ^n  x^(i−1) =n if x=1  let f(x)=Σ_(i=1) ^n  (x^i /i) ⇒f^′ (x)=Σ_(i=1) ^n x^(i−1)  =((1−x^n )/(1−x))   (if x≠1)  f(x)=∫_0 ^x  ((1−t^n )/(1−t)) dt  +c   (c=f(0)=0) ⇒f(x)=∫_0 ^x  ((1−t^n )/(1−t))dt  =∫_0 ^x  (dt/(1−t)) −∫_0 ^x  (t^n /(1−t))dt =−ln∣1−x∣ −∫_0 ^x (t^n /(1−t))dt  x=1 ⇒f(x)=Σ_(i=1) ^n  (1/i) =H_n    also    Σ_(i=1) ^n   (x^(2i−1) /i) =(1/x)Σ_(i=1) ^n  (((x^2 )^i )/i) =(1/x)f(x^2 )=(1/x)(−ln∣1−x^2 ∣−∫_0 ^x^2  (t^n /(1−t))dt)  =−(1/x)(ln∣1−x^2 ∣+∫_0 ^x^2   (t^n /(1−t))dt)   (x≠1) so for x≠1  W^′ (x)=2(((x^n −1)/(x−1)))(ln∣1−x∣+∫_0 ^x  (t^n /(1−t))dt)+(2/x)(ln∣1−x^2 ∣+∫_0 ^x^2  (t^n /(1−t))dt)

wehave(i=1nxii)2=i=1nx2ii2+1i<jnxi+jij W(x)=(i=1nxii)2i=1nx2ii2 W(x)=2(i=1nxii)(i=1nxii)i=1n2ix2i1i2 =2(i=1nxi1)(i=1nxii)2i=1nx2i1iwehave i=1nxi1=i=0n1xi=1xn1xifx1andi=1nxi1=nifx=1 letf(x)=i=1nxiif(x)=i=1nxi1=1xn1x(ifx1) f(x)=0x1tn1tdt+c(c=f(0)=0)f(x)=0x1tn1tdt =0xdt1t0xtn1tdt=ln1x0xtn1tdt x=1f(x)=i=1n1i=Hnalso i=1nx2i1i=1xi=1n(x2)ii=1xf(x2)=1x(ln1x20x2tn1tdt) =1x(ln1x2+0x2tn1tdt)(x1)soforx1 W(x)=2(xn1x1)(ln1x+0xtn1tdt)+2x(ln1x2+0x2tn1tdt)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com