Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74016 by mathmax by abdo last updated on 17/Nov/19

let g(x) =(1/x)∫_x ^(2x+1)   arctan(xt)dt  find lim_(x→0)  g(x)  and lim_(x→+∞) g(x).

letg(x)=1xx2x+1arctan(xt)dtfindlimx0g(x)andlimx+g(x).

Commented by mathmax by abdo last updated on 18/Nov/19

we have xg(x)=∫_x ^(2x+1)  arctan(xt)dt  =_(xt =u)    ∫_x^2  ^(x(2x+1))  arctan(u)(du/x) =(1/x)∫_x^2  ^(2x^2  +x)   arctan(u)du  ⇒x^2 g(x)=_(by parts)    [u arctan(u)]_x^2  ^(2x^2  +x) −∫_x^2  ^(2x^2  +x) (u/(1+u^2 ))du  =(2x^2  +x)arctan(2x^2  +x)−x^2 arctan(x^2 )−[(1/2)ln(1+u^2 )]_x^2  ^(2x^2  +x)   =(2x^2  +x)arctan(2x^2  +x)−x^2  arctan(x^2 )  −(1/2)ln(((1+(2x^2  +x)^2 )/(1+x^4 ))) ⇒  g(x)=(2+(1/x))arctan(2x^2  +x)−arctan(x^2 )−(1/(2x^2 ))ln(((1+4x^4 +4x^3 +x^2 )/(1+x^4 )))  g(x) ∼   (((2x+1)/x))(2x^2  +x)−x^2 −(1/(2x^2 ))ln(((4x^4  +4x^3  +x^2  +1)/(x^4  +1))) (x→0)  lim_(x→0) g(x)=−∞  lim_(x→+∞) g(x)=2×(π/2)−(π/2)−0 =(π/2)

wehavexg(x)=x2x+1arctan(xt)dt=xt=ux2x(2x+1)arctan(u)dux=1xx22x2+xarctan(u)dux2g(x)=byparts[uarctan(u)]x22x2+xx22x2+xu1+u2du=(2x2+x)arctan(2x2+x)x2arctan(x2)[12ln(1+u2)]x22x2+x=(2x2+x)arctan(2x2+x)x2arctan(x2)12ln(1+(2x2+x)21+x4)g(x)=(2+1x)arctan(2x2+x)arctan(x2)12x2ln(1+4x4+4x3+x21+x4)g(x)(2x+1x)(2x2+x)x212x2ln(4x4+4x3+x2+1x4+1)(x0)limx0g(x)=limx+g(x)=2×π2π20=π2

Commented by mathmax by abdo last updated on 18/Nov/19

g(x)=(2+(1/x))arctan(2x^2 +x)−((arctan(x^2 ))/x^2 )−(1/(2x^2 ))ln(((4x^4 +4x^3  +x^2  +1)/(x^4  +1)))

g(x)=(2+1x)arctan(2x2+x)arctan(x2)x212x2ln(4x4+4x3+x2+1x4+1)

Commented by mind is power last updated on 18/Nov/19

ln(((1+4x^4 +4x^3 +x^2 )/(x^4 +1)))=ln(1+x^2 +4x^3 +4x^4 )−ln(1+x^4 )  ln(1+x^2 +4x^3 +4x^4 )−ln(1+x^4 )  =x^2 +0(x^2 )   x→0

ln(1+4x4+4x3+x2x4+1)=ln(1+x2+4x3+4x4)ln(1+x4)ln(1+x2+4x3+4x4)ln(1+x4)=x2+0(x2)x0

Commented by abdomathmax last updated on 18/Nov/19

this quantity is multiplied by −(1/(2x^2 )) sir ....

thisquantityismultipliedby12x2sir....

Commented by mind is power last updated on 19/Nov/19

yeah so lim−(1/(2x^2 ))     ln(((1+4x^4 +4x^3 +x^2 ))/(x^4 +1))=−(1/2)

yeahsolim12x2ln(1+4x4+4x3+x2)x4+1=12

Answered by mind is power last updated on 18/Nov/19

∫arctan(xt)dt,u=xt  =(1/x)∫arctan(u)du  =(1/x)[uarctab(u)]−(1/x)∫(u/(1+u^2 ))du  =(1/x)[u arcran(u)]−(1/(2x)).ln(1+u^2 )  g(x)=(1/x^2 ).(x(2x+1)arctan(x(2x+1))−((ln(1+x^2 (2x+1)^2 ))/2)−x^2 arctan(x^2 )+((ln(1+x^4 ))/2)}  lim_(x→0)  g(x)=  ln(1+t)=t+o(t)  arctan(t)=t+o(t)  ⇒lim_(x→0)  g(x)=(1−(1/2)−0+0)=(1/2)  lim_(x→+∞) g(x)=π−(π/2)=(π/2)

arctan(xt)dt,u=xt=1xarctan(u)du=1x[uarctab(u)]1xu1+u2du=1x[uarcran(u)]12x.ln(1+u2)g(x)=1x2.(x(2x+1)arctan(x(2x+1))ln(1+x2(2x+1)2)2x2arctan(x2)+ln(1+x4)2}limx0g(x)=ln(1+t)=t+o(t)arctan(t)=t+o(t)limx0g(x)=(1120+0)=12limgx+(x)=ππ2=π2

Commented by abdomathmax last updated on 18/Nov/19

thank you sir.

thankyousir.

Commented by mind is power last updated on 18/Nov/19

y^� ′re welcom

y^rewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com