Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74026 by mathmax by abdo last updated on 17/Nov/19

U_n is a sequence wich verfy   ∀n ∈N        2^n ( U_n +U_(n+1) )=1  1) calculate U_n  interms of n  2) is (U_n ) cojverhent ?

$${U}_{{n}} {is}\:{a}\:{sequence}\:{wich}\:{verfy}\: \\ $$$$\forall{n}\:\in{N}\:\:\:\:\:\:\:\:\mathrm{2}^{{n}} \left(\:{U}_{{n}} +{U}_{{n}+\mathrm{1}} \right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{is}\:\left({U}_{{n}} \right)\:{cojverhent}\:? \\ $$

Commented by mathmax by abdo last updated on 18/Nov/19

1) we have 2^n (U_n +U_(n+1) )=1 ⇒U_n +U_(n+1) =(1/2^n ) ⇒  Σ_(k=0) ^(n−1) (−1)^k (U_k +U_(k+1) ) =Σ_(k=0) ^(n−1)  (((−1)^k )/2^k ) ⇒  (U_0 +U_1 )−(U_1 +U_2 )+(U_2 +U_3 )+....+(−1)^(n−2) (U_(n−2) +U_(n−1) )  +(−1)^(n−1) (U_(n−1) +U_n )=Σ_(k=0) ^(n−1)  (((−1)^k )/2^k ) ⇒  U_0 +(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1)  (((−1)^k )/2^k ) ⇒(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1)  (((−1)^k )/2^k )−U_0   ⇒ U_n =(−1)^(n−1)  Σ_(k=0) ^(n−1)  (((−1)^k )/2^k ) −(−1)^(n−1)  U_0   =(−1)^n  U_0 −(−1)^n  Σ_(k=0) ^(n−1)   (((−1)^k )/2^k )   we have  Σ_(k=0) ^(n−1)   (((−1)^k )/2^k ) =Σ_(k=0) ^(n−1) (−(1/2))^k  =((1−(−(1/2))^n )/(1−(−(1/2)))) =(2/3)(1−(((−1)^n )/2^n )) ⇒  U_n =(−1)^n  U_0 −(−1)^n ×(2/3)(1−(((−1)^n )/2^n ))  =(−1)^n (U_0 −(2/3)) +(1/2^n )  if U_0 =(2/3)  weget lim_(n→+∞) U_n =0  if U_0 ≠(2/3)    the sequence (−1)^n  diverges ⇒ U_n diverges.

$$\left.\mathrm{1}\right)\:{we}\:{have}\:\mathrm{2}^{{n}} \left({U}_{{n}} +{U}_{{n}+\mathrm{1}} \right)=\mathrm{1}\:\Rightarrow{U}_{{n}} +{U}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \left({U}_{{k}} +{U}_{{k}+\mathrm{1}} \right)\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} }\:\Rightarrow \\ $$$$\left({U}_{\mathrm{0}} +{U}_{\mathrm{1}} \right)−\left({U}_{\mathrm{1}} +{U}_{\mathrm{2}} \right)+\left({U}_{\mathrm{2}} +{U}_{\mathrm{3}} \right)+....+\left(−\mathrm{1}\right)^{{n}−\mathrm{2}} \left({U}_{{n}−\mathrm{2}} +{U}_{{n}−\mathrm{1}} \right) \\ $$$$+\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({U}_{{n}−\mathrm{1}} +{U}_{{n}} \right)=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} }\:\Rightarrow \\ $$$${U}_{\mathrm{0}} +\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} }\:\Rightarrow\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} }−{U}_{\mathrm{0}} \\ $$$$\Rightarrow\:{U}_{{n}} =\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} }\:−\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{U}_{\mathrm{0}} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \:{U}_{\mathrm{0}} −\left(−\mathrm{1}\right)^{{n}} \:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} }\:\:\:{we}\:{have} \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} }\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{k}} \:=\frac{\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} }{\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)}\:=\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\right)\:\Rightarrow \\ $$$${U}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \:{U}_{\mathrm{0}} −\left(−\mathrm{1}\right)^{{n}} ×\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\right) \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \left({U}_{\mathrm{0}} −\frac{\mathrm{2}}{\mathrm{3}}\right)\:+\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$${if}\:{U}_{\mathrm{0}} =\frac{\mathrm{2}}{\mathrm{3}}\:\:{weget}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\mathrm{0} \\ $$$${if}\:{U}_{\mathrm{0}} \neq\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:{the}\:{sequence}\:\left(−\mathrm{1}\right)^{{n}} \:{diverges}\:\Rightarrow\:{U}_{{n}} {diverges}. \\ $$

Commented by abdomathmax last updated on 17/Nov/19

2) is (U_n ) convergent ?

$$\left.\mathrm{2}\right)\:{is}\:\left({U}_{{n}} \right)\:{convergent}\:? \\ $$

Commented by mathmax by abdo last updated on 18/Nov/19

forgive  U_n =(−1)^n (U_0 −(2/3))+(2/3)×(1/2^n ) ⇒  U_n =(−1)^n (U_0 −(2/3))+(1/(3×2^(n−1) ))

$${forgive}\:\:{U}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \left({U}_{\mathrm{0}} −\frac{\mathrm{2}}{\mathrm{3}}\right)+\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\Rightarrow \\ $$$${U}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \left({U}_{\mathrm{0}} −\frac{\mathrm{2}}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{2}^{{n}−\mathrm{1}} } \\ $$

Commented by mathmax by abdo last updated on 18/Nov/19

all answers given are correct sometimes with a small eroor of  typo  and when i find a big mistake i delet the post and send  another...

$${all}\:{answers}\:{given}\:{are}\:{correct}\:{sometimes}\:{with}\:{a}\:{small}\:{eroor}\:{of} \\ $$$${typo}\:\:{and}\:{when}\:{i}\:{find}\:{a}\:{big}\:{mistake}\:{i}\:{delet}\:{the}\:{post}\:{and}\:{send} \\ $$$${another}... \\ $$

Commented by Joel578 last updated on 18/Nov/19

Sir, I think it would be better if you use  ′edit post′ feature, so others can see the correct  question/answer  directly

$$\mathrm{Sir},\:\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{would}\:\mathrm{be}\:\mathrm{better}\:\mathrm{if}\:\mathrm{you}\:\mathrm{use} \\ $$$$'{edit}\:{post}'\:\mathrm{feature},\:\mathrm{so}\:\mathrm{others}\:\mathrm{can}\:\mathrm{see}\:\mathrm{the}\:\mathrm{correct} \\ $$$$\mathrm{question}/\mathrm{answer}\:\:\mathrm{directly} \\ $$

Answered by mind is power last updated on 18/Nov/19

2^n (U_n +U_(n+1) )=1  ⇒U_n +U_(n+1) =(1/2^n )  let  W_n =2^n U_n   W_(n+1) =2^(n+1) .U_(n+1) =2.(2^n U_(n+1) )  ⇔W_n +(W_(n+1) /2)=1  ⇔W_(n+1) +2W_n =2  t_(n+1) =−2t_n ⇒t_n =(−2)^n s  W_n =t_n +a⇒a+2a=2⇒a=(2/3)  W_n =(−2)^n s+(2/3)   ,withe s+(2/3)=W_0   U_n =(−1)^n s+(2/3).(1/2^n ),s=U_0 −(2/3)  U_n   cv if and only if U_0 =(2/3)    in this case U_n →0

$$\mathrm{2}^{\mathrm{n}} \left(\mathrm{U}_{\mathrm{n}} +\mathrm{U}_{\mathrm{n}+\mathrm{1}} \right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{U}_{\mathrm{n}} +\mathrm{U}_{\mathrm{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} } \\ $$$$\mathrm{let} \\ $$$$\mathrm{W}_{\mathrm{n}} =\mathrm{2}^{\mathrm{n}} \mathrm{U}_{\mathrm{n}} \\ $$$$\mathrm{W}_{\mathrm{n}+\mathrm{1}} =\mathrm{2}^{\mathrm{n}+\mathrm{1}} .\mathrm{U}_{\mathrm{n}+\mathrm{1}} =\mathrm{2}.\left(\mathrm{2}^{\mathrm{n}} \mathrm{U}_{\mathrm{n}+\mathrm{1}} \right) \\ $$$$\Leftrightarrow\mathrm{W}_{\mathrm{n}} +\frac{\mathrm{W}_{\mathrm{n}+\mathrm{1}} }{\mathrm{2}}=\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{W}_{\mathrm{n}+\mathrm{1}} +\mathrm{2W}_{\mathrm{n}} =\mathrm{2} \\ $$$$\mathrm{t}_{\mathrm{n}+\mathrm{1}} =−\mathrm{2t}_{\mathrm{n}} \Rightarrow\mathrm{t}_{\mathrm{n}} =\left(−\mathrm{2}\right)^{\mathrm{n}} \mathrm{s} \\ $$$$\mathrm{W}_{\mathrm{n}} =\mathrm{t}_{\mathrm{n}} +\mathrm{a}\Rightarrow\mathrm{a}+\mathrm{2a}=\mathrm{2}\Rightarrow\mathrm{a}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{W}_{\mathrm{n}} =\left(−\mathrm{2}\right)^{\mathrm{n}} \mathrm{s}+\frac{\mathrm{2}}{\mathrm{3}}\:\:\:,\mathrm{withe}\:\mathrm{s}+\frac{\mathrm{2}}{\mathrm{3}}=\mathrm{W}_{\mathrm{0}} \\ $$$$\mathrm{U}_{\mathrm{n}} =\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{s}+\frac{\mathrm{2}}{\mathrm{3}}.\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} },\mathrm{s}=\mathrm{U}_{\mathrm{0}} −\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{U}_{\mathrm{n}} \:\:\mathrm{cv}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{U}_{\mathrm{0}} =\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{U}_{\mathrm{n}} \rightarrow\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com