Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 74041 by FCB last updated on 18/Nov/19

Commented by mathmax by abdo last updated on 18/Nov/19

let A_n =(1+(((−1)^n )/n))^(1/(sin(π(√(1+n^2 )))))  ⇒  ln(A_n )) =(1/(sin(π(√(n^2 +1)))))ln(1+(((−1)^n )/n))  we have  ln(1+(((−1)^n )/n)) ∼(((−1)^n )/n)    and π(√(n^2 +1))=πn(√(1+(1/n^2 )))  ∼nπ(1+(1/(2n^2 )))=nπ +(π/(2n)) ⇒sin(π(√(n^2 +1))) ∼(−1)^n  sin((π/(2n))) ⇒  ln(A_n ) ∼   (((−1)^n )/(sin((π/(2n)))))×(((−1)^n )/n) =(1/(n sin((π/(2n))))) ∼(1/(n×(π/(2n)))) =(2/π)  lim_(n→+∞)  lnA_n =(2/π) ⇒lim_(n→+∞)    A_n =e^(2/π)   any answer given is not correct...!

$${let}\:{A}_{{n}} =\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\right)^{\frac{\mathrm{1}}{{sin}\left(\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)}} \:\Rightarrow \\ $$$$\left.{ln}\left({A}_{{n}} \right)\right)\:=\frac{\mathrm{1}}{{sin}\left(\pi\sqrt{{n}^{\mathrm{2}} +\mathrm{1}}\right)}{ln}\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\right)\:\:{we}\:{have} \\ $$$${ln}\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\right)\:\sim\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:\:\:\:{and}\:\pi\sqrt{{n}^{\mathrm{2}} +\mathrm{1}}=\pi{n}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }} \\ $$$$\sim{n}\pi\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right)={n}\pi\:+\frac{\pi}{\mathrm{2}{n}}\:\Rightarrow{sin}\left(\pi\sqrt{{n}^{\mathrm{2}} +\mathrm{1}}\right)\:\sim\left(−\mathrm{1}\right)^{{n}} \:{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)\:\Rightarrow \\ $$$${ln}\left({A}_{{n}} \right)\:\sim\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)}×\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:=\frac{\mathrm{1}}{{n}\:{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)}\:\sim\frac{\mathrm{1}}{{n}×\frac{\pi}{\mathrm{2}{n}}}\:=\frac{\mathrm{2}}{\pi} \\ $$$${lim}_{{n}\rightarrow+\infty} \:{lnA}_{{n}} =\frac{\mathrm{2}}{\pi}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\:\:{A}_{{n}} ={e}^{\frac{\mathrm{2}}{\pi}} \\ $$$${any}\:{answer}\:{given}\:{is}\:{not}\:{correct}...! \\ $$

Commented by FCB last updated on 18/Nov/19

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by abdomathmax last updated on 18/Nov/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com