Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 7423 by Rasheed Soomro last updated on 28/Aug/16

Produce a 3×3 array of different numbers  whose all the rows and all the columns make  AP′s of different common-digfernces.

$${Produce}\:{a}\:\mathrm{3}×\mathrm{3}\:\boldsymbol{{array}}\:{of}\:\boldsymbol{{different}}\:{numbers} \\ $$$${whose}\:{all}\:{the}\:\boldsymbol{{rows}}\:{and}\:{all}\:{the}\:\boldsymbol{{columns}}\:{make} \\ $$$$\boldsymbol{{AP}}'\boldsymbol{{s}}\:{of}\:\boldsymbol{{different}}\:\boldsymbol{{common}}-\boldsymbol{{digfernces}}. \\ $$

Commented by Yozzia last updated on 28/Aug/16

 ((1,2,3),(5,7,9),(9,(12),(15)) )    ((a,(a+d),(a+2d)),((a+b),((a+b)+c),((a+b)+2c)),((a+2b),((a+d)+2{(a+b)+c−(a+d)}),(a+2d+2{(a+b)+2c−a−2d})) )    ((a,(a+d),(a+2d)),((a+b),((a+b)+c),((a+b)+2c)),((a+2b),((a+2b)+(−d+2c)),((a+2b)+2(−d+2c))) )   The above matrix has all rows and columns  each as APs.   The common differences form the set  { b , d , c , b+c−d , b+2c−2d , 2c−d }.  # of distinct ways any two common−differences   may be equal =5+4+3+2+1=15.  If all members of the set are distinct,  necessarily b≠c≠d.  Also, b+c−d≠b+2c−2d , b+2c−2d≠2c−d and 2c−d≠b+c−d.  ⇒ c−d≠0 , b−d≠0 and c≠b   or c≠d, b≠d and c≠b.  Likewise,(1) b≠b+c−d , b≠b+2c−2d, b≠2c−d  or c≠d , c≠d , b≠2c−d;  (2) d≠b+c−d , d≠b+2c−2d , d≠2c−d  or 2d≠b+c, 3d≠b+2c, d≠c;  (3) c≠b+c−d, c≠b+2c−2d , c≠2c−d  or b≠d, 2d≠b+c, d≠c.  I think it is sufficient then that  b≠c≠d , b≠2c−d, 2d≠b+c and 3d≠b+2c  to construct the matrix.  Let a=0.   ((0,d,(2d)),(b,(b+c),(b+2c)),((2b),(2b−d+2c),(2b−2d+4c)) )   Let d=2, b=1, c=3   ((0,2,4),(1,4,7),(2,6,(10)) )  Here 2d=b+c even though b≠c≠d and hence  the matrix does not fit as an example.  Let d=2,b=1, c=0.  ∴  ((0,2,4),(1,1,1),(2,0,(−2)) )  This example works.

$$\begin{pmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{5}}&{\mathrm{7}}&{\mathrm{9}}\\{\mathrm{9}}&{\mathrm{12}}&{\mathrm{15}}\end{pmatrix}\: \\ $$$$\begin{pmatrix}{{a}}&{{a}+{d}}&{{a}+\mathrm{2}{d}}\\{{a}+{b}}&{\left({a}+{b}\right)+{c}}&{\left({a}+{b}\right)+\mathrm{2}{c}}\\{{a}+\mathrm{2}{b}}&{\left({a}+{d}\right)+\mathrm{2}\left\{\left({a}+{b}\right)+{c}−\left({a}+{d}\right)\right\}}&{{a}+\mathrm{2}{d}+\mathrm{2}\left\{\left({a}+{b}\right)+\mathrm{2}{c}−{a}−\mathrm{2}{d}\right\}}\end{pmatrix}\: \\ $$$$\begin{pmatrix}{{a}}&{{a}+{d}}&{{a}+\mathrm{2}{d}}\\{{a}+{b}}&{\left({a}+{b}\right)+{c}}&{\left({a}+{b}\right)+\mathrm{2}{c}}\\{{a}+\mathrm{2}{b}}&{\left({a}+\mathrm{2}{b}\right)+\left(−{d}+\mathrm{2}{c}\right)}&{\left({a}+\mathrm{2}{b}\right)+\mathrm{2}\left(−{d}+\mathrm{2}{c}\right)}\end{pmatrix}\: \\ $$$${The}\:{above}\:{matrix}\:{has}\:{all}\:{rows}\:{and}\:{columns} \\ $$$${each}\:{as}\:{APs}.\: \\ $$$${The}\:{common}\:{differences}\:{form}\:{the}\:{set} \\ $$$$\left\{\:{b}\:,\:{d}\:,\:{c}\:,\:{b}+{c}−{d}\:,\:{b}+\mathrm{2}{c}−\mathrm{2}{d}\:,\:\mathrm{2}{c}−{d}\:\right\}. \\ $$$$#\:{of}\:{distinct}\:{ways}\:{any}\:{two}\:{common}−{differences}\: \\ $$$${may}\:{be}\:{equal}\:=\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1}=\mathrm{15}. \\ $$$${If}\:{all}\:{members}\:{of}\:{the}\:{set}\:{are}\:{distinct}, \\ $$$${necessarily}\:{b}\neq{c}\neq{d}. \\ $$$${Also},\:{b}+{c}−{d}\neq{b}+\mathrm{2}{c}−\mathrm{2}{d}\:,\:{b}+\mathrm{2}{c}−\mathrm{2}{d}\neq\mathrm{2}{c}−{d}\:{and}\:\mathrm{2}{c}−{d}\neq{b}+{c}−{d}. \\ $$$$\Rightarrow\:{c}−{d}\neq\mathrm{0}\:,\:{b}−{d}\neq\mathrm{0}\:{and}\:{c}\neq{b}\: \\ $$$${or}\:{c}\neq{d},\:{b}\neq{d}\:{and}\:{c}\neq{b}. \\ $$$${Likewise},\left(\mathrm{1}\right)\:{b}\neq{b}+{c}−{d}\:,\:{b}\neq{b}+\mathrm{2}{c}−\mathrm{2}{d},\:{b}\neq\mathrm{2}{c}−{d} \\ $$$${or}\:{c}\neq{d}\:,\:{c}\neq{d}\:,\:{b}\neq\mathrm{2}{c}−{d}; \\ $$$$\left(\mathrm{2}\right)\:{d}\neq{b}+{c}−{d}\:,\:{d}\neq{b}+\mathrm{2}{c}−\mathrm{2}{d}\:,\:{d}\neq\mathrm{2}{c}−{d} \\ $$$${or}\:\mathrm{2}{d}\neq{b}+{c},\:\mathrm{3}{d}\neq{b}+\mathrm{2}{c},\:{d}\neq{c}; \\ $$$$\left(\mathrm{3}\right)\:{c}\neq{b}+{c}−{d},\:{c}\neq{b}+\mathrm{2}{c}−\mathrm{2}{d}\:,\:{c}\neq\mathrm{2}{c}−{d} \\ $$$${or}\:{b}\neq{d},\:\mathrm{2}{d}\neq{b}+{c},\:{d}\neq{c}. \\ $$$${I}\:{think}\:{it}\:{is}\:{sufficient}\:{then}\:{that} \\ $$$${b}\neq{c}\neq{d}\:,\:{b}\neq\mathrm{2}{c}−{d},\:\mathrm{2}{d}\neq{b}+{c}\:{and}\:\mathrm{3}{d}\neq{b}+\mathrm{2}{c} \\ $$$${to}\:{construct}\:{the}\:{matrix}. \\ $$$${Let}\:{a}=\mathrm{0}. \\ $$$$\begin{pmatrix}{\mathrm{0}}&{{d}}&{\mathrm{2}{d}}\\{{b}}&{{b}+{c}}&{{b}+\mathrm{2}{c}}\\{\mathrm{2}{b}}&{\mathrm{2}{b}−{d}+\mathrm{2}{c}}&{\mathrm{2}{b}−\mathrm{2}{d}+\mathrm{4}{c}}\end{pmatrix}\: \\ $$$${Let}\:{d}=\mathrm{2},\:{b}=\mathrm{1},\:{c}=\mathrm{3} \\ $$$$\begin{pmatrix}{\mathrm{0}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{1}}&{\mathrm{4}}&{\mathrm{7}}\\{\mathrm{2}}&{\mathrm{6}}&{\mathrm{10}}\end{pmatrix}\:\:{Here}\:\mathrm{2}{d}={b}+{c}\:{even}\:{though}\:{b}\neq{c}\neq{d}\:{and}\:{hence} \\ $$$${the}\:{matrix}\:{does}\:{not}\:{fit}\:{as}\:{an}\:{example}. \\ $$$${Let}\:{d}=\mathrm{2},{b}=\mathrm{1},\:{c}=\mathrm{0}. \\ $$$$\therefore\:\begin{pmatrix}{\mathrm{0}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{0}}&{−\mathrm{2}}\end{pmatrix}\:\:{This}\:{example}\:{works}. \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 29/Aug/16

V N^  ice!   G^(  O^⌢ O_(⌣) ^(⌢) ) D  analysis!

$${V}\:\mathcal{N}^{\:} {ice}!\:\:\:\mathcal{G}^{\:\:\underset{\smile} {\overset{\frown} {\mathcal{O}O}}} \mathcal{D}\:\:{analysis}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com