Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74231 by necxxx last updated on 20/Nov/19

Commented by necxxx last updated on 20/Nov/19

Commented by necxxx last updated on 20/Nov/19

here was a step taken though not so  sure. Please I need help. Thanks in  advance.

$${here}\:{was}\:{a}\:{step}\:{taken}\:{though}\:{not}\:{so} \\ $$$${sure}.\:{Please}\:{I}\:{need}\:{help}.\:{Thanks}\:{in} \\ $$$${advance}. \\ $$

Answered by mind is power last updated on 20/Nov/19

Z=(√(x^2 +y^2 ))∩(x^2 +y^2 +z^2 =16)⇒2(x^2 +y^2 )=16  ⇒x^2 +y^2 =8  intersection over circle center    0≤r≤4   ,  −(π/2)≤θ≤(π/2),   −π≤α≤π  x=rcos(θ)cos(α)  y=rcos(θ)sin(α)  z=rsin(θ)       0≤Z≤(√(x^2 +y^2 )) ⇒  0≤rsin(θ)≤(√(r^2 cos^2 (θ)))=rcos(θ)  ⇒0≤sin(θ)≤cos(θ)⇒θ∈[0,(π/4)]  V=∫_0 ^4 ∫_0 ^(π/4) ∫_(−π) ^π r^2 sin(θ)dαdθdr  =∫_0 ^4 r^2 dr.∫_0 ^(π/4) sin(θ)dθ.∫_(−π) ^π dα  =((64)/3).(1−((√2)/2)).2π  =(2−(√2)).((64π)/3)

$${Z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\cap\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16}\right)\Rightarrow\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)=\mathrm{16} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{8} \\ $$$${intersection}\:{over}\:{circle}\:{center}\:\: \\ $$$$\mathrm{0}\leqslant{r}\leqslant\mathrm{4}\:\:\:,\:\:−\frac{\pi}{\mathrm{2}}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}},\:\:\:−\pi\leqslant\alpha\leqslant\pi \\ $$$${x}={rcos}\left(\theta\right){cos}\left(\alpha\right) \\ $$$${y}={rcos}\left(\theta\right){sin}\left(\alpha\right) \\ $$$${z}={rsin}\left(\theta\right) \\ $$$$\:\:\:\:\:\mathrm{0}\leqslant{Z}\leqslant\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{0}\leqslant{rsin}\left(\theta\right)\leqslant\sqrt{{r}^{\mathrm{2}} {cos}^{\mathrm{2}} \left(\theta\right)}={rcos}\left(\theta\right) \\ $$$$\Rightarrow\mathrm{0}\leqslant{sin}\left(\theta\right)\leqslant{cos}\left(\theta\right)\Rightarrow\theta\in\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right] \\ $$$${V}=\int_{\mathrm{0}} ^{\mathrm{4}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \int_{−\pi} ^{\pi} {r}^{\mathrm{2}} {sin}\left(\theta\right){d}\alpha{d}\theta{dr} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{4}} {r}^{\mathrm{2}} {dr}.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {sin}\left(\theta\right){d}\theta.\int_{−\pi} ^{\pi} {d}\alpha \\ $$$$=\frac{\mathrm{64}}{\mathrm{3}}.\left(\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right).\mathrm{2}\pi \\ $$$$=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right).\frac{\mathrm{64}\pi}{\mathrm{3}} \\ $$

Commented by necxxx last updated on 25/Nov/19

oh...Thank you so much.

$${oh}...{Thank}\:{you}\:{so}\:{much}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com