Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 74322 by naka3546 last updated on 22/Nov/19

Let    k  =  (((xy + yz + zx)(x + y + z))/((x + y)(y + z)(z + x)))  Find  the  minimum  and  maximum  value  of   k .

$${Let}\:\: \\ $$$${k}\:\:=\:\:\frac{\left({xy}\:+\:{yz}\:+\:{zx}\right)\left({x}\:+\:{y}\:+\:{z}\right)}{\left({x}\:+\:{y}\right)\left({y}\:+\:{z}\right)\left({z}\:+\:{x}\right)} \\ $$$${Find}\:\:{the}\:\:{minimum}\:\:{and}\:\:{maximum}\:\:{value}\:\:{of}\:\:\:{k}\:. \\ $$

Answered by MJS last updated on 23/Nov/19

k−1=((xyz)/((x+y)(x+z)(y+z)))  y=px∧z=qx  (1)  k−1=((pq)/((p+1)(p+q)(q+1)))  (d/dq)[((pq)/((p+1)(p+q)(q+1)))]=0  ((p(p−q^2 ))/((p+1)(p+q)^2 (q+1)^2 ))=0  ⇒ q=±(√p)  insert in (1)  k−1=(p/((1±(√p))^2 (p+1)))  (d/dp)[(p/((1±(√p))^2 (p+1)))]=0  ((1±p^(3/2) )/((1∓(√p))^3 (p+1)^2 ))=0  ⇒ p=1∧q=1  (no other real solution)  ⇒x=y=z  ⇒ k−1=(1/8)  ⇒ k=(9/8)  which is the absolute maximum  the minimum is −∞  put q=1:  k−1=(p/(2(p+1)^2 ))  lim_(p→−1) ((p/(2(p+1)^2 ))) =−∞

$${k}−\mathrm{1}=\frac{{xyz}}{\left({x}+{y}\right)\left({x}+{z}\right)\left({y}+{z}\right)} \\ $$$${y}={px}\wedge{z}={qx} \\ $$$$\left(\mathrm{1}\right)\:\:{k}−\mathrm{1}=\frac{{pq}}{\left({p}+\mathrm{1}\right)\left({p}+{q}\right)\left({q}+\mathrm{1}\right)} \\ $$$$\frac{{d}}{{dq}}\left[\frac{{pq}}{\left({p}+\mathrm{1}\right)\left({p}+{q}\right)\left({q}+\mathrm{1}\right)}\right]=\mathrm{0} \\ $$$$\frac{{p}\left({p}−{q}^{\mathrm{2}} \right)}{\left({p}+\mathrm{1}\right)\left({p}+{q}\right)^{\mathrm{2}} \left({q}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\:{q}=\pm\sqrt{{p}} \\ $$$$\mathrm{insert}\:\mathrm{in}\:\left(\mathrm{1}\right) \\ $$$${k}−\mathrm{1}=\frac{{p}}{\left(\mathrm{1}\pm\sqrt{{p}}\right)^{\mathrm{2}} \left({p}+\mathrm{1}\right)} \\ $$$$\frac{{d}}{{dp}}\left[\frac{{p}}{\left(\mathrm{1}\pm\sqrt{{p}}\right)^{\mathrm{2}} \left({p}+\mathrm{1}\right)}\right]=\mathrm{0} \\ $$$$\frac{\mathrm{1}\pm{p}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\left(\mathrm{1}\mp\sqrt{{p}}\right)^{\mathrm{3}} \left({p}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\:{p}=\mathrm{1}\wedge{q}=\mathrm{1} \\ $$$$\left(\mathrm{no}\:\mathrm{other}\:\mathrm{real}\:\mathrm{solution}\right) \\ $$$$\Rightarrow{x}={y}={z} \\ $$$$\Rightarrow\:{k}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow\:{k}=\frac{\mathrm{9}}{\mathrm{8}} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{the}\:\mathrm{absolute}\:\mathrm{maximum} \\ $$$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{is}\:−\infty \\ $$$$\mathrm{put}\:{q}=\mathrm{1}: \\ $$$${k}−\mathrm{1}=\frac{{p}}{\mathrm{2}\left({p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\underset{{p}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\frac{{p}}{\mathrm{2}\left({p}+\mathrm{1}\right)^{\mathrm{2}} }\right)\:=−\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com