Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74342 by mathmax by abdo last updated on 22/Nov/19

1) calculate  U_n =∫_0 ^∞   e^(−nx) [x]dx  2) find  lim_(n→+∞)   n U_n   3) determine nsture of the serie Σ U_n

$$\left.\mathrm{1}\right)\:{calculate}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}} \left[{x}\right]{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{lim}_{{n}\rightarrow+\infty} \:\:{n}\:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{nsture}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$

Commented by mathmax by abdo last updated on 23/Nov/19

1) we have U_n =∫_0 ^∞  e^(−nx) [x]dx =Σ_(k=0) ^∞  ∫_k ^(k+1)  e^(−nx) kdx  =Σ_(k=0) ^∞  k  [−(1/n) e^(−nx) ]_k ^(k+1) =(1/n)Σ_(k=0) ^∞  k{e^(−nk) −e^(−n(k+1)) }  ⇒nU_n =Σ_(k=0) ^∞  k e^(−nk)  −Σ_(k=0) ^∞  k e^(−n(k+1))   =Σ_(k=0) ^∞  k e^(−nk)  −Σ_(k=1) ^∞  (k−1)e^(−nk)   =Σ_(k=1) ^∞  k e^(−nk) −Σ_(k=1) ^∞  k e^(−nk)  +Σ_(k=1) ^∞  e^(−nk)   =Σ_(k=0) ^∞  (e^(−n) )^k −1 =(1/(1−e^(−n) )) −1 =((1−1+e^(−n) )/(1−e^(−n) )) ⇒nU_n =(e^(−n) /(1−e^(−n) ))  =(1/(e^n −1)) ⇒ U_n =(1/(n(e^n −1)))   (n>0)  2)we have U_n =(1/(n(e^n −1))) ⇒U_n ∼(1/(ne^n )) →0 ⇒lim_(n→+∞) U_n =0  3)U_n →0 and decrease so Σ U_n   and ∫_1 ^(+∞)   (dt/(te^t ))  have the same  nature   and ∫_1 ^(+∞)  (e^(−t) /t) dt   converges ⇒Σ U_n  converges.

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \left[{x}\right]{dx}\:=\sum_{{k}=\mathrm{0}} ^{\infty} \:\int_{{k}} ^{{k}+\mathrm{1}} \:{e}^{−{nx}} {kdx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:{k}\:\:\left[−\frac{\mathrm{1}}{{n}}\:{e}^{−{nx}} \right]_{{k}} ^{{k}+\mathrm{1}} =\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{\infty} \:{k}\left\{{e}^{−{nk}} −{e}^{−{n}\left({k}+\mathrm{1}\right)} \right\} \\ $$$$\Rightarrow{nU}_{{n}} =\sum_{{k}=\mathrm{0}} ^{\infty} \:{k}\:{e}^{−{nk}} \:−\sum_{{k}=\mathrm{0}} ^{\infty} \:{k}\:{e}^{−{n}\left({k}+\mathrm{1}\right)} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:{k}\:{e}^{−{nk}} \:−\sum_{{k}=\mathrm{1}} ^{\infty} \:\left({k}−\mathrm{1}\right){e}^{−{nk}} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{\infty} \:{k}\:{e}^{−{nk}} −\sum_{{k}=\mathrm{1}} ^{\infty} \:{k}\:{e}^{−{nk}} \:+\sum_{{k}=\mathrm{1}} ^{\infty} \:{e}^{−{nk}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:\left({e}^{−{n}} \right)^{{k}} −\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{n}} }\:−\mathrm{1}\:=\frac{\mathrm{1}−\mathrm{1}+{e}^{−{n}} }{\mathrm{1}−{e}^{−{n}} }\:\Rightarrow{nU}_{{n}} =\frac{{e}^{−{n}} }{\mathrm{1}−{e}^{−{n}} } \\ $$$$=\frac{\mathrm{1}}{{e}^{{n}} −\mathrm{1}}\:\Rightarrow\:{U}_{{n}} =\frac{\mathrm{1}}{{n}\left({e}^{{n}} −\mathrm{1}\right)}\:\:\:\left({n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:{U}_{{n}} =\frac{\mathrm{1}}{{n}\left({e}^{{n}} −\mathrm{1}\right)}\:\Rightarrow{U}_{{n}} \sim\frac{\mathrm{1}}{{ne}^{{n}} }\:\rightarrow\mathrm{0}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\mathrm{0} \\ $$$$\left.\mathrm{3}\right){U}_{{n}} \rightarrow\mathrm{0}\:{and}\:{decrease}\:{so}\:\Sigma\:{U}_{{n}} \:\:{and}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{te}^{{t}} }\:\:{have}\:{the}\:{same} \\ $$$${nature}\:\:\:{and}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{e}^{−{t}} }{{t}}\:{dt}\:\:\:{converges}\:\Rightarrow\Sigma\:{U}_{{n}} \:{converges}. \\ $$

Commented by mathmax by abdo last updated on 23/Nov/19

nU_n ∼ e^(−n)  →0 ⇒lim_(n→+∞)   n U_n =0

$${nU}_{{n}} \sim\:{e}^{−{n}} \:\rightarrow\mathrm{0}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\:{n}\:{U}_{{n}} =\mathrm{0} \\ $$

Answered by mind is power last updated on 22/Nov/19

U_n =Σ_(k=0) ^(+∞) ∫_k ^(k+1) e^(−nx) [x]dx  =Σ_(k=0) ^(+∞) ∫_k ^(k+1) e^(−nx) .k=Σ_(k≥0) ke^(−nx) .−(1/n)  =Σ−(k/n)(e^(−n(k+1)) −e^(−nk) )  =Σ_(k≥0) ((−ke^(−nk) (e^(−n) −1))/n)⇒nU_n =−(e^(−n) −1)(Σ_(k≥1) ke^(−nk) )  =−(e^(−n) −1).(e^(−n) +Σ_(k≥2) ke^(−nk) )  Σke^(−nk) ≤e^(−n) Σke^(−k)   ∀n,k   withe n≥2,k≥2  nk≥n+k  ⇔n(k−1)−k≥0⇔(n−1)(k−1)≥1 clear  ⇒e^(−nk) ≤e^(−n) .e^(−k)   ⇒Σke^(−nk) ≤e^(−n) .(Σke^(−k) )→0  ⇒lim nU_n →0

$${U}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} {e}^{−{nx}} \left[{x}\right]{dx} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} {e}^{−{nx}} .{k}=\underset{{k}\geqslant\mathrm{0}} {\sum}{ke}^{−{nx}} .−\frac{\mathrm{1}}{{n}} \\ $$$$=\Sigma−\frac{{k}}{{n}}\left({e}^{−{n}\left({k}+\mathrm{1}\right)} −{e}^{−{nk}} \right) \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{−{ke}^{−{nk}} \left({e}^{−{n}} −\mathrm{1}\right)}{{n}}\Rightarrow{nU}_{{n}} =−\left({e}^{−{n}} −\mathrm{1}\right)\left(\underset{{k}\geqslant\mathrm{1}} {\sum}{ke}^{−{nk}} \right) \\ $$$$=−\left({e}^{−{n}} −\mathrm{1}\right).\left({e}^{−{n}} +\underset{{k}\geqslant\mathrm{2}} {\sum}{ke}^{−{nk}} \right) \\ $$$$\Sigma{ke}^{−{nk}} \leqslant{e}^{−{n}} \Sigma{ke}^{−{k}} \\ $$$$\forall{n},{k}\:\:\:{withe}\:{n}\geqslant\mathrm{2},{k}\geqslant\mathrm{2} \\ $$$${nk}\geqslant{n}+{k} \\ $$$$\Leftrightarrow{n}\left({k}−\mathrm{1}\right)−{k}\geqslant\mathrm{0}\Leftrightarrow\left({n}−\mathrm{1}\right)\left({k}−\mathrm{1}\right)\geqslant\mathrm{1}\:{clear} \\ $$$$\Rightarrow{e}^{−{nk}} \leqslant{e}^{−{n}} .{e}^{−{k}} \\ $$$$\Rightarrow\Sigma{ke}^{−{nk}} \leqslant{e}^{−{n}} .\left(\Sigma{ke}^{−{k}} \right)\rightarrow\mathrm{0} \\ $$$$\Rightarrow{lim}\:{nU}_{{n}} \rightarrow\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com